Matematicheskoe modelirovanie
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Model.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskoe modelirovanie, 1999, Volume 11, Number 11, Pages 75–90 (Mi mm1183)  

This article is cited in 4 scientific papers (total in 4 papers)

Computational methods and algorithms

Grid approximation of singularly perturbed boundary value problems in a nonconvex domain with a piecewise smooth boundary

G. I. Shishkin

Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences
Abstract: The Dirichlet problem for an elliptic equation is considered on a L-shaped domain formed by rectangles. The highest derivatives of the equation are multiplied by a parameter ε taking arbitrary values in the half-interval (0,1]. For ε=0 the elliptic equation degenerates into an equation which contains no derivatives. For the boundary-value problem, using the method on the base of classical finite difference schemes, domain decomposition and additive separation of singularities, we construct iterative and iteration-free difference schemes which do converge ε-uniformly. The ε-uniform approximation for the singular part of the solution of the boundary value problem is attained due to the use of special grids that concentrate in the neighbourhood of the boundary layer.
Received: 05.08.1996
Bibliographic databases:
UDC: 519.632/633
Language: Russian
Citation: G. I. Shishkin, “Grid approximation of singularly perturbed boundary value problems in a nonconvex domain with a piecewise smooth boundary”, Mat. Model., 11:11 (1999), 75–90
Citation in format AMSBIB
\Bibitem{Shi99}
\by G.~I.~Shishkin
\paper Grid approximation of singularly perturbed boundary value problems in a~nonconvex domain with a~piecewise smooth boundary
\jour Mat. Model.
\yr 1999
\vol 11
\issue 11
\pages 75--90
\mathnet{http://mi.mathnet.ru/mm1183}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1761699}
\zmath{https://zbmath.org/?q=an:1189.65273}
Linking options:
  • https://www.mathnet.ru/eng/mm1183
  • https://www.mathnet.ru/eng/mm/v11/i11/p75
  • This publication is cited in the following 4 articles:
    1. Kopteva N., O'Riordan E., “Shishkin Meshes in the Numerical Solution of Singularly Perturbed Differential Equations”, Int J Numer Anal Model, 7:3 (2010), 393–415  mathscinet  zmath  isi  elib
    2. Dunne, RK, “Fitted mesh numerical methods for singularly perturbed elliptic problems with mixed derivatives”, IMA Journal of Numerical Analysis, 29:3 (2009), 712  crossref  mathscinet  zmath  isi  scopus
    3. Andreev, VB, “Pointwise approximation of corner singularities for a singularly perturbed reaction-diffusion equation in an L-shaped domain”, Mathematics of Computation, 77:264 (2008), 2125  crossref  mathscinet  zmath  adsnasa  isi  scopus
    4. Andreev V.B., “On the accuracy of grid approximations to nonsmooth solutions of a singularly perturbed reaction-diffusion equation in the square”, Differential Equations, 42:7 (2006), 954–966  mathnet  crossref  mathscinet  zmath  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическое моделирование
    Statistics & downloads:
    Abstract page:388
    Full-text PDF :155
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025