Matematicheskaya Teoriya Igr i Ee Prilozheniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Mat. Teor. Igr Pril.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Matematicheskaya Teoriya Igr i Ee Prilozheniya, 2020, Volume 12, Issue 2, Pages 63–81 (Mi mgta259)  

Secretary problem with vanishing objects

Sergey I. Dotsenkoa, Georgiy M. Shevchenkob

a Taras Shevchenko National University of Kyiv
b Taras Shevchenko National University of Kyiv
References:
Abstract: We consider a version of the secretary problem where elements may vanish during the selection and become unchoosable. We construct a selection strategy and identify the probability to select the best element, which turns out to be asymptotically maximal as number of elements increases indefinitely. As an auxiliary result of independent interest we establish large deviation probability estimates for sums of independent variables with distinct geometric distribution.
Keywords: optimal selection problem, secretary problem, vanishing objects, large deviation probability.
Received: 10.05.2020
Revised: 17.06.2020
Accepted: 25.06.2020
Document Type: Article
UDC: 519.88/.21
BBC: 22.18
Language: Russian
Citation: Sergey I. Dotsenko, Georgiy M. Shevchenko, “Secretary problem with vanishing objects”, Mat. Teor. Igr Pril., 12:2 (2020), 63–81
Citation in format AMSBIB
\Bibitem{DotShe20}
\by Sergey~I.~Dotsenko, Georgiy~M.~Shevchenko
\paper Secretary problem with vanishing objects
\jour Mat. Teor. Igr Pril.
\yr 2020
\vol 12
\issue 2
\pages 63--81
\mathnet{http://mi.mathnet.ru/mgta259}
Linking options:
  • https://www.mathnet.ru/eng/mgta259
  • https://www.mathnet.ru/eng/mgta/v12/i2/p63
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Математическая теория игр и её приложения
    Statistics & downloads:
    Abstract page:194
    Full-text PDF :247
    References:30
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025