Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2021, Volume 14, Issue 1, Pages 28–41
DOI: https://doi.org/10.17516/1997-1397-2021-14-1-28-41
(Mi jsfu888)
 

This article is cited in 11 scientific papers (total in 11 papers)

On a limiting passage as the thickness of a rigid inclusions in an equilibrium problem for a Kirchhoff-Love plate with a crack

Nyurgun P. Lazarev, Galina M. Semenova, Natalya A. Romanova

North-Eastern Federal University, Yakutsk, Russian Federation
References:
Abstract: The paper considers equilibrium models of Kirchhoff-Love plates with rigid inclusions of two types. The first type of inclusion is described by three-dimensional sets, the second one corresponds to a cylindrical rigid inclusion, which is perpendicular to the plate's median plane in the initial state. For both models, we suppose that there is a through crack along a fixed part of the inclusion's boundary. On the crack non-penetration conditions are prescribed which correspond to a certain known configuration bending near the crack. The uniqueness solvability of a new problems for a Kirchhoff-Love plate with a flat rigid inclusion is proved. It is proved that when a thickness parameter tends to zero, the problem for a flat rigid inclusion can be represented as a limiting task for a family of variational problems concerning the inclusions of the first type. A solvability of an optimal control problem with a control given by the size of inclusions is proved.
Keywords: variational problem, crack, limit passage, nonpenetration condition, optimal control problem.
Funding agency Grant number
Russian Foundation for Basic Research 18-29-10007_мк
Ministry of Science and Higher Education of the Russian Federation 075-02-2020-1543/1
The first author's work was supported by the Russian Foundation for Basic Research (grant no. 18-29-10007-mk), the 2nd author's work was supported the Ministry of science and higher education of the Russian Federation, supplementary agreement no. 075-02-2020-1543/1, April 29, 2020.
Received: 10.05.2020
Received in revised form: 10.07.2020
Accepted: 20.09.2020
Bibliographic databases:
Document Type: Article
UDC: 517.9
Language: English
Citation: Nyurgun P. Lazarev, Galina M. Semenova, Natalya A. Romanova, “On a limiting passage as the thickness of a rigid inclusions in an equilibrium problem for a Kirchhoff-Love plate with a crack”, J. Sib. Fed. Univ. Math. Phys., 14:1 (2021), 28–41
Citation in format AMSBIB
\Bibitem{LazSemRom21}
\by Nyurgun~P.~Lazarev, Galina~M.~Semenova, Natalya~A.~Romanova
\paper On a limiting passage as the thickness of a rigid inclusions in an equilibrium problem for a Kirchhoff-Love plate with a crack
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2021
\vol 14
\issue 1
\pages 28--41
\mathnet{http://mi.mathnet.ru/jsfu888}
\crossref{https://doi.org/10.17516/1997-1397-2021-14-1-28-41}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000615268200004}
Linking options:
  • https://www.mathnet.ru/eng/jsfu888
  • https://www.mathnet.ru/eng/jsfu/v14/i1/p28
  • This publication is cited in the following 11 articles:
    1. N. Lazarev, G. Semenova, E. Efimova, “Equilibrium problem for an inhomogeneous two-dimensional elastic body with two interacting thin rigid inclusions”, Journal of Computational and Applied Mathematics, 438 (2024), 115539  crossref
    2. Victor A. Kovtunenko, Nyurgun P. Lazarev, “Variational inequality for a Timoshenko plate contacting at the boundary with an inclined obstacle”, Phil. Trans. R. Soc. A., 382:2277 (2024)  crossref
    3. Oksana V. Germider, Vasily N. Popov, “On calculation of bending of a thin orthotropic plate using Legendre and Chebyshev polynomials of the first kind”, Zhurn. SFU. Ser. Matem. i fiz., 17:5 (2024), 586–598  mathnet
    4. N. A. Nikolaeva, “Plastina Kirkhgofa — Lyava s ploskim zhestkim vklyucheniem”, Chelyab. fiz.-matem. zhurn., 8:1 (2023), 29–46  mathnet  crossref
    5. N. P. Lazarev, V. A. Kovtunenko, “Zadacha o ravnovesii dvumernogo uprugogo tela s dvumya kontaktiruyuschimi tonkimi zhestkimi vklyucheniyami”, Materialy Voronezhskoi mezhdunarodnoi zimnei matematicheskoi shkoly «Sovremennye metody teorii funktsii i smezhnye problemy», Voronezh, 27 yanvarya — 1 fevralya 2023 g. Chast 1, Itogi nauki i tekhn. Sovrem. mat. i ee pril. Temat. obz., 227, VINITI RAN, M., 2023, 51–60  mathnet  crossref
    6. N. P. Lazarev, E. F. Sharin, E. S. Efimova, “Equilibrium Problem for an Inhomogeneous Kirchhoff–Love Plate Contacting with a Partially Delaminated Inclusion”, Lobachevskii J Math, 44:10 (2023), 4127  crossref
    7. N. P. Lazarev, E. D. Fedotov, “Trekhmernaya zadacha tipa Sinorini dlya kompozitnykh tel, kontaktiruyuschikh ostrymi granyami zhestkikh vklyuchenii”, Chelyab. fiz.-matem. zhurn., 7:4 (2022), 412–423  mathnet  crossref
    8. Nyurgun P. Lazarev, “Equilibrium problem for a thermoelastic Kirchhoff–Love plate with a delaminated flat rigid inclusion”, Phil. Trans. R. Soc. A., 380:2236 (2022)  crossref
    9. Nyurgun Lazarev, Galina Semenova, Evgenii Sharin, “TOPICAL ISSUES OF THERMOPHYSICS, ENERGETICS AND HYDROGASDYNAMICS IN THE ARCTIC CONDITIONS”: Dedicated to the 85th Birthday Anniversary of Professor E. A. Bondarev, 2528, “TOPICAL ISSUES OF THERMOPHYSICS, ENERGETICS AND HYDROGASDYNAMICS IN THE ARCTIC CONDITIONS”: Dedicated to the 85th Birthday Anniversary of Professor E. A. Bondarev, 2022, 020002  crossref
    10. N. P. Lazarev, E. F. Sharin, G. M. Semenova, “Optimalnoe upravlenie raspolozheniem tochki sharnirnogo soedineniya zhestkikh vklyuchenii v zadache o ravnovesii plastiny Timoshenko”, Chelyab. fiz.-matem. zhurn., 6:3 (2021), 278–288  mathnet  crossref
    11. Lazarev N., “Inverse Problem For Cracked Inhomogeneous Kirchhoff-Love Plate With Two Hinged Rigid Inclusions”, Bound. Value Probl., 2021:1 (2021), 88  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
    Statistics & downloads:
    Abstract page:153
    Full-text PDF :57
    References:38
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025