Loading [MathJax]/jax/output/SVG/config.js
Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2012, Volume 5, Issue 3, Pages 337–348 (Mi jsfu264)  

This article is cited in 6 scientific papers (total in 6 papers)

On an ill-posed problem for the heat equation

Roman E. Puzyrev, Alexander A. Shlapunov

Institute of Mathematics, Siberian Federal University, Krasnoyarsk, Russia
Full-text PDF (255 kB) Citations (6)
References:
Abstract: A boundary value problem for the heat equation is studied. It consists of recovering a function, satisfying the heat equation in a cylindrical domain, via its values ant the values of its normal derivative on a given part of the lateral surface of the cylinder. We prove that the problem is ill-posed in the natural spaces of smooth functions and in the corresponding Hölder spaces; besides, additional initial data do not turn the problem to a well-posed one. Using Integral Representation's Method we obtain Uniqueness Theorem and solvability conditions for the problem.
Keywords: boundary value problems for heat equation, ill-posed problems, integral representation's method.
Received: 10.01.2012
Received in revised form: 10.02.2012
Accepted: 20.04.2012
Document Type: Article
UDC: 517.956.4
Language: English
Citation: Roman E. Puzyrev, Alexander A. Shlapunov, “On an ill-posed problem for the heat equation”, J. Sib. Fed. Univ. Math. Phys., 5:3 (2012), 337–348
Citation in format AMSBIB
\Bibitem{PuzShl12}
\by Roman~E.~Puzyrev, Alexander~A.~Shlapunov
\paper On an ill-posed problem for the heat equation
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2012
\vol 5
\issue 3
\pages 337--348
\mathnet{http://mi.mathnet.ru/jsfu264}
Linking options:
  • https://www.mathnet.ru/eng/jsfu264
  • https://www.mathnet.ru/eng/jsfu/v5/i3/p337
  • This publication is cited in the following 6 articles:
    1. Ilya A. Kurilenko, Alexander A. Shlapunov, “On the ill-posed Cauchy problem for the polyharmonic heat equation”, Zhurn. SFU. Ser. Matem. i fiz., 16:2 (2023), 194–203  mathnet
    2. I. E. Niyozov, “Regularization of a nonstandard Cauchy problem for a dynamic Lame system”, Russian Math. (Iz. VUZ), 64:4 (2020), 44–53  mathnet  crossref  crossref  isi
    3. Ilya A. Kurilenko, Alexander A. Shlapunov, “On Carleman-type formulas for solutions to the heat equation”, Zhurn. SFU. Ser. Matem. i fiz., 12:4 (2019), 421–433  mathnet  crossref
    4. K. O. Makhmudov, O. I. Makhmudov, N. N. Tarkhanov, “A Nonstandard Cauchy Problem for the Heat Equation”, Math. Notes, 102:2 (2017), 250–260  mathnet  crossref  crossref  mathscinet  isi  elib
    5. J. Darde, “Iterated quasi-reversibility method applied to elliptic and parabolic data completion problems”, Inverse Probl. Imaging, 10:2 (2016), 379–407  crossref  mathscinet  zmath  isi  scopus
    6. Becache E., Bourgeois L., Franceschini L., Darde J., “Application of Mixed Formulations of Quasi-Reversibility To Solve Ill-Posed Problems For Heat and Wave Equations: the 1D Case”, Inverse Probl. Imaging, 9:4 (2015), 971–1002  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
    Statistics & downloads:
    Abstract page:323
    Full-text PDF :154
    References:50
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025