Journal of Siberian Federal University. Mathematics & Physics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



J. Sib. Fed. Univ. Math. Phys.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Journal of Siberian Federal University. Mathematics & Physics, 2011, Volume 4, Issue 2, Pages 217–228 (Mi jsfu180)  

This article is cited in 1 scientific paper (total in 1 paper)

Boundary problems for Helmholtz equation and the Cauchy problem for Dirac operators

Alexander A. Shlapunov

Institute of Mathematics, Siberian Federal University, Krasnoyarsk, Russia
Full-text PDF (219 kB) Citations (1)
References:
Abstract: Studying an operator equation $Au=f$ in Hilbert spaces one usually needs the adjoint operator $A^\star$ for $A$. Solving the ill-posed Cauchy problem for Dirac type systems in the Lebesgue spaces by an iteration method we propose to construct the corresponding adjoint operator with the use of normally solvable mixed problem for Helmholtz Equation. This leads to the description of necessary and sufficient solvability conditions for the Cauchy Problem and formulae for its exact and approximate solutions.
Keywords: mixed problems, Helmholtz equation, Dirac operators, ill-posed Cauchy problem.
Received: 01.12.2010
Received in revised form: 01.12.2010
Accepted: 15.01.2011
Bibliographic databases:
Document Type: Article
UDC: 517.955+517.55
Language: English
Citation: Alexander A. Shlapunov, “Boundary problems for Helmholtz equation and the Cauchy problem for Dirac operators”, J. Sib. Fed. Univ. Math. Phys., 4:2 (2011), 217–228
Citation in format AMSBIB
\Bibitem{Shl11}
\by Alexander~A.~Shlapunov
\paper Boundary problems for Helmholtz equation and the Cauchy problem for Dirac operators
\jour J. Sib. Fed. Univ. Math. Phys.
\yr 2011
\vol 4
\issue 2
\pages 217--228
\mathnet{http://mi.mathnet.ru/jsfu180}
\elib{https://elibrary.ru/item.asp?id=15607703}
Linking options:
  • https://www.mathnet.ru/eng/jsfu180
  • https://www.mathnet.ru/eng/jsfu/v4/i2/p217
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Журнал Сибирского федерального университета. Серия "Математика и физика"
    Statistics & downloads:
    Abstract page:472
    Full-text PDF :181
    References:70
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025