Izvestiya of Saratov University. Mathematics. Mechanics. Informatics
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. Saratov Univ. Math. Mech. Inform.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya of Saratov University. Mathematics. Mechanics. Informatics, 2021, Volume 21, Issue 3, Pages 282–293
DOI: https://doi.org/10.18500/1816-9791-2021-21-3-282-293
(Mi isu894)
 

This article is cited in 2 scientific papers (total in 2 papers)

Scientific Part
Mathematics

Reconstruction formula for differential systems with a singularity

M. Yu. Ignatiev

Saratov State University, 83 Astrakhanskaya St., Saratov 410012, Russia
Full-text PDF (247 kB) Citations (2)
References:
Abstract: Our studies concern some aspects of scattering theory of the singular differential systems yx1Ayq(x)y=ρBy, x>0 with n×n matrices A,B,q(x),x(0,), where A,B are constant and ρ is a spectral parameter. We concentrate on the important special case when q() is smooth and q(0)=0 and derive a formula that express such q() in the form of some special contour integral, where the kernel can be written in terms of the Weyl-type solutions of the considered differential system. Formulas of such a type play an important role in constructive solution of inverse scattering problems: use of such formulas, where the terms in their right-hand sides are previously found from the so-called main equation, provides a final step of the solution procedure. In order to obtain the above-mentioned reconstruction formula, we establish first the asymptotical expansions for the Weyl-type solutions as ρ with o(ρ1) rate remainder estimate.
Key words: differential systems, singularity, integral equations, asymptotical expansions.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00102
20-31-70005
This work was supported by the Russian Foundation for Basic Research (projects Nos. 19-01-00102, 20-31-70005).
Received: 20.12.2020
Accepted: 22.01.2021
Bibliographic databases:
Document Type: Article
UDC: 517.984
Language: English
Citation: M. Yu. Ignatiev, “Reconstruction formula for differential systems with a singularity”, Izv. Saratov Univ. Math. Mech. Inform., 21:3 (2021), 282–293
Citation in format AMSBIB
\Bibitem{Ign21}
\by M.~Yu.~Ignatiev
\paper Reconstruction formula for differential systems with a singularity
\jour Izv. Saratov Univ. Math. Mech. Inform.
\yr 2021
\vol 21
\issue 3
\pages 282--293
\mathnet{http://mi.mathnet.ru/isu894}
\crossref{https://doi.org/10.18500/1816-9791-2021-21-3-282-293}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000692198400001}
Linking options:
  • https://www.mathnet.ru/eng/isu894
  • https://www.mathnet.ru/eng/isu/v21/i3/p282
  • This publication is cited in the following 2 articles:
    1. M. Yu. Ignat'ev, “Constructive solution of scattering inverse problem for systems of ordinary differential equations with singularities”, Moscow University Mathematics Bulletin, 78:2 (2023), 83–94  mathnet  crossref  crossref  zmath  elib
    2. Xin-Jian Xu, Chuan-Fu Yang, Vjacheslav A. Yurko, Ran Zhang, “Inverse problems for radial Schrödinger operators with the missing part of eigenvalues”, Sci. China Math., 66:8 (2023), 1831  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Известия Саратовского университета. Новая серия. Серия Математика. Механика. Информатика
    Statistics & downloads:
    Abstract page:109
    Full-text PDF :36
    References:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025