Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. IMI UdGU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2019, Volume 54, Pages 27–37
DOI: https://doi.org/10.20537/2226-3594-2019-54-02
(Mi iimi379)
 

This article is cited in 3 scientific papers (total in 3 papers)

On the continuous dependence on the parameter of the set of solutions of the operator equation

E. S. Zhukovskiya, W. Merchelaba

a Derzhavin Tambov State University, ul. Internatsional'naya, 33, Tambov, 392000, Russia
b Laboratory of Applied Mathematics and Modeling, 8 Mai 1945 Guelma University, Guelma, Algeria
Full-text PDF (164 kB) Citations (3)
References:
Abstract: For mappings acting from a metric space $ (X, \rho_X) $ to a space $ Y, $ on which a distance is defined (i.e., a function $ d: X \times X \to \mathbb{R}_+ $ such that $ d (x, u) = 0 \Leftrightarrow x=u $), the following analogue of the covering property is defined. The set
$$ \mathrm{Cov}_{\alpha} [f] = \{(x, \tilde{y}) \in X \times Y: \, \exists \tilde{x} \in X \ f(\tilde{x}) =\tilde{y}, \ \rho_{X}(\tilde{x}, x) \leq {\alpha}^{-1} d_{Y} \bigl(\tilde{y}, f(x) \bigr)\}$$
is called the set of $\alpha$-covering of the mapping $f:X \to Y.$ For given $ \tilde{y} \in Y, $ $ \Phi: X \times X \to Y $ the equation $\Phi(x,x)=\tilde{y}$ is considered. A theorem on the existence of a solution is formulated. The problem of the stability of solutions on small perturbations of the mapping $\Phi$ is investigated. Namely, we consider a sequence of mappings $\Phi_{n}: X\times X\to Y, $ $n = 1,2,\ldots,$ such that for all $x \in X$ the following holds: $(x,\tilde{y}) \in \mathrm{Cov}_{\alpha}\big[\Phi_n(\cdot,x)\big],$ the mapping $\Phi_n( x,\cdot)$ is $\beta$-Lipschitz and for the solution $x^{*}$ of the initial equation $d_{Y} \big (\tilde{y}, \Phi_{n} (x^{*}, x^{*}) \big) \to 0.$ Under these conditions, it is proved that for any $n$ there exists $x^{*}_{n}$ such that $\Phi_{n} (x^{*}_{n}, x^{*}_{n}) = \tilde{y}$ and $\{x^{*}_{n} \} $ converges to $x^{*}$ in the metric space $X.$  Moreover, we consider the equation $\Phi(x,x,t)=\tilde{y}$ with the parameter $t$ which is an element of a topological space. It is assumed that $(x, \tilde{y})\in \mathrm{Cov}_{\alpha} \big [\Phi_n (\cdot, x, t) \big], $ the mapping $\Phi_n (x, \cdot, t) $ is $\beta$-Lipschitz, and the mapping $ \Phi_n (x, x, \cdot) $ is continuous. Statements on the upper and lower semicontinuous dependence of the solutions set on the parameter $t$ are proved.
Keywords: operator equation, existence of solutions, estimation of solutions, continuous dependence of a solution on parameters, metric space, covering mapping, Lipschitz mapping.
Funding agency Grant number
Russian Foundation for Basic Research 17–01–00553_а
17–41–680975_р_а
17–51–12064_ННИО_а
Ministry of Education and Science of the Russian Federation 3.8515.2017/БЧ
The study was funded by the Russian Foundation for Basic Research (projects numbers 17–01–00553, 17–41–680975, 17–51–12064) and Ministry of Science and Higher Education of the Russian Federation in the framework of the basic part of the state task (project no. 3.8515.2017).
Received: 29.10.2019
Bibliographic databases:
Document Type: Article
UDC: 517.988
MSC: 47J05, 54E40
Language: Russian
Citation: E. S. Zhukovskiy, W. Merchela, “On the continuous dependence on the parameter of the set of solutions of the operator equation”, Izv. IMI UdGU, 54 (2019), 27–37
Citation in format AMSBIB
\Bibitem{ZhuMer19}
\by E.~S.~Zhukovskiy, W.~Merchela
\paper On the continuous dependence on the parameter of the set of solutions of the operator equation
\jour Izv. IMI UdGU
\yr 2019
\vol 54
\pages 27--37
\mathnet{http://mi.mathnet.ru/iimi379}
\crossref{https://doi.org/10.20537/2226-3594-2019-54-02}
\elib{https://elibrary.ru/item.asp?id=41435138}
Linking options:
  • https://www.mathnet.ru/eng/iimi379
  • https://www.mathnet.ru/eng/iimi/v54/p27
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
    Statistics & downloads:
    Abstract page:335
    Full-text PDF :183
    References:25
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024