Loading [MathJax]/jax/output/SVG/config.js
Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. IMI UdGU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2018, Volume 51, Pages 79–122
DOI: https://doi.org/10.20537/2226-3594-2018-51-04
(Mi iimi355)
 

This article is cited in 4 scientific papers (total in 4 papers)

Stability of two-parameter systems of linear autonomous differential equations with bounded delay

M. V. Mulyukov

Perm National Research Polytechnic University, Komsomol'skii pr., 29, Perm, 614990
Full-text PDF (543 kB) Citations (4)
References:
Abstract: We consider a system of linear autonomous differential equations with bounded delay in the case where its characteristic function depends linearly on two scalar parameters. The development of the D-subdivision method is carried out in connection with the problem of constructing the stability domain of this system. Firstly, a complete classification of the points and lines of D-subdivision is carried out. Secondly, a complete classification of two-parameter characteristic equations by the type and structure of D-subdivision domains is carried out. All equations are divided into four types: D-subdivision domains of equations of the first type have curvilinear boundaries, D-subdivision domains of equations of the second and the third type have only rectilinear boundaries, equations of the fourth type are stable or unstable regardless of parameter values. Thirdly, for each type of equations, new methods of selecting the stability domain among regions of D-subdivision are developed. On the basis of the results obtained, stability domains are constructed for certain differential equations and systems of equations with concentrated and distributed delay.
Keywords: delay differential equations, systems of differential equations, autonomous equations, asymptotic stability, D-subdivision method, stability domain.
Received: 15.05.2018
Bibliographic databases:
Document Type: Article
UDC: 517.929
Language: Russian
Citation: M. V. Mulyukov, “Stability of two-parameter systems of linear autonomous differential equations with bounded delay”, Izv. IMI UdGU, 51 (2018), 79–122
Citation in format AMSBIB
\Bibitem{Mul18}
\by M.~V.~Mulyukov
\paper Stability of two-parameter systems of linear autonomous differential equations with bounded delay
\jour Izv. IMI UdGU
\yr 2018
\vol 51
\pages 79--122
\mathnet{http://mi.mathnet.ru/iimi355}
\crossref{https://doi.org/10.20537/2226-3594-2018-51-04}
\elib{https://elibrary.ru/item.asp?id=35269040}
Linking options:
  • https://www.mathnet.ru/eng/iimi355
  • https://www.mathnet.ru/eng/iimi/v51/p79
  • This publication is cited in the following 4 articles:
    1. A. S. Balandin, V. V. Malygina, “Asymptotic Properties of Solutions to Differential Equations of Neutral Type”, Sib. Adv. Math., 31:2 (2021), 79  crossref
    2. A. S. Balandin, V. V. Malygina, “Asimptoticheskie svoistva reshenii odnogo klassa differentsialnykh uravnenii neitralnogo tipa”, Matem. tr., 23:2 (2020), 3–49  mathnet  crossref
    3. M. V. Mulyukov, “Ustoichivost trekhparametricheskikh sistem dvukh lineinykh differentsialnykh uravnenii s zapazdyvaniem. Chast I”, Sib. elektron. matem. izv., 16 (2019), 2019–2054  mathnet  crossref
    4. M. V. Mulyukov, “Ustoichivost trekhparametricheskikh sistem dvukh lineinykh differentsialnykh uravnenii s zapazdyvaniem. Chast II”, Sib. elektron. matem. izv., 16 (2019), 2055–2079  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
    Statistics & downloads:
    Abstract page:394
    Full-text PDF :230
    References:40
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025