Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Izv. IMI UdGU:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta, 2018, Volume 51, Pages 3–41
DOI: https://doi.org/10.20537/2226-3594-2018-51-01
(Mi iimi352)
 

This article is cited in 6 scientific papers (total in 6 papers)

On the spectrum of a two-dimensional schrödinger operator with a homogeneous magnetic field and a periodic electric potential

L. I. Danilov

Udmurt Federal Research Center of the Ural Branch of the Russian Academy of Sciences, ul. T. Baramzinoi, 34, Izhevsk, 426067, Russia
Full-text PDF (501 kB) Citations (6)
References:
Abstract: We consider the two-dimensional Schrödinger operator ˆHB+VˆHB+V with a uniform magnetic field BB and a periodic electric potential VV. The absence of eigenvalues (of infinite multiplicity) in the spectrum of the operator ˆHB+VˆHB+V is proved if the electric potential VV is a nonconstant trigonometric polynomial and the condition (2π)1Bv(K)=Q1(2π)1Bv(K)=Q1 for the magnetic flux is fulfilled where QN and the v(K) is the area of the elementary cell K of the period lattice ΛR2 of the potential V. In this case the singular component of the spectrum is absent so the spectrum is absolutely continuous. In this paper, we use the magnetic Bloch theory. Instead of the lattice Λ we choose the lattice ΛQ={N1QE1+N2E2:NjZ,j=1,2} where E1 and E2 are basis vectors of the lattice Λ. The operator ˆHB+V is unitarily equivalent to the direct integral of the operators ˆHB(k)+V with k2πKQ acting on the space of magnetic Bloch functions where KQ is an elementary cell of the reciprocal lattice ΛQR2. The proof of the absence of eigenvalues in the spectrum of the operator ˆHB+V is based on the following assertion: if λ is an eigenvalue of the operator ˆHB+V, then the λ is an eigenvalue of the operators ˆHB(k+iϰ)+V for all k,ϰR2 and, moreover, (under the assumed conditions on the V and the B) there is a vector k0C2{0} such that the eigenfunctions of the operators ˆHB(k+ζk0)+V with ζC are trigonometric polynomials ζjΦj in ζ.
Keywords: Schrödinger operator, spectrum, periodic electric potential, homogeneous magnetic field.
Received: 18.04.2018
Bibliographic databases:
Document Type: Article
UDC: 517.958, 517.984.5
MSC: 35P05
Language: Russian
Citation: L. I. Danilov, “On the spectrum of a two-dimensional schrödinger operator with a homogeneous magnetic field and a periodic electric potential”, Izv. IMI UdGU, 51 (2018), 3–41
Citation in format AMSBIB
\Bibitem{Dan18}
\by L.~I.~Danilov
\paper On the spectrum of a two-dimensional schrödinger operator with a homogeneous magnetic field and a periodic electric potential
\jour Izv. IMI UdGU
\yr 2018
\vol 51
\pages 3--41
\mathnet{http://mi.mathnet.ru/iimi352}
\crossref{https://doi.org/10.20537/2226-3594-2018-51-01}
\elib{https://elibrary.ru/item.asp?id=35269037}
Linking options:
  • https://www.mathnet.ru/eng/iimi352
  • https://www.mathnet.ru/eng/iimi/v51/p3
  • This publication is cited in the following 6 articles:
    1. L. I. Danilov, “On the spectrum of the Landau Hamiltonian perturbed by a periodic smooth electric potential”, Theoret. and Math. Phys., 221:3 (2024), 2165–2176  mathnet  crossref  crossref  adsnasa
    2. L. I. Danilov, “On the spectrum of the Landau Hamiltonian perturbed by a periodic electric potential”, Sb. Math., 214:12 (2023), 1721–1750  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    3. L. I. Danilov, “O spektre mnogomernogo periodicheskogo magnitnogo operatora Shredingera s singulyarnym elektricheskim potentsialom”, Izv. IMI UdGU, 58 (2021), 18–47  mathnet  crossref
    4. L. I. Danilov, “Spectrum of the Landau Hamiltonian with a periodic electric potential”, Theoret. and Math. Phys., 202:1 (2020), 41–57  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    5. L. I. Danilov, “O spektre gamiltoniana Landau s periodicheskim elektricheskim potentsialom VLploc(R2), p>1”, Izv. IMI UdGU, 55 (2020), 42–59  mathnet  crossref  elib
    6. L. I. Danilov, “O spektre relyativistskogo gamiltoniana Landau s periodicheskim elektricheskim potentsialom”, Izv. IMI UdGU, 54 (2019), 3–26  mathnet  crossref  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Izvestiya Instituta Matematiki i Informatiki Udmurtskogo Gosudarstvennogo Universiteta
    Statistics & downloads:
    Abstract page:480
    Full-text PDF :225
    References:73
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025