|
Optimal cubature formulas for Morrey type function classes on multidimensional torus
Sh. A. Balgimbayeva, D. B. Bazarkhanov Department of Function Theory and Functional Analysis, Institute of Mathematics and Mathematical Modelling, 28 Shevchenko St,
050010 Almaty, Kazakhstan
Abstract:
In the paper, we establish estimates, sharp in order, for the error of optimal cubature formulas for the smoothness spaces $B_{pq}^{s\tau}(\mathbb{T}^m)$ of Nikol'skii–Besov type and $F_{pq}^{s\tau}(\mathbb{T}^m)$ of Lizorkin–Triebel type, both related to Morrey spaces, on multidimensional torus, for some range of the parameters $s, p, q, \tau$ ($0<s<\infty$, $1\leqslant p$, $q\leqslant\infty$, $0\leqslant\tau\leqslant1/p$). In particular, we obtain those estimates for the isotropic Lizorkin–Triebel function spaces $F^s_{\infty q}(\mathbb{T}^m)$ .
Keywords and phrases:
Nikol'skii–Besov/Lizorkin–Triebel smoothness spaces related to Morrey space, multidimensional torus, optimal cubature formula.
Received: 02.11.2023
Citation:
Sh. A. Balgimbayeva, D. B. Bazarkhanov, “Optimal cubature formulas for Morrey type function classes on multidimensional torus”, Eurasian Math. J., 15:3 (2024), 25–37
Linking options:
https://www.mathnet.ru/eng/emj508 https://www.mathnet.ru/eng/emj/v15/i3/p25
|
|