Eurasian Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Mathematical Journal, 2021, Volume 12, Number 2, Pages 25–38
DOI: https://doi.org/10.32523/2077-9879-2021-12-2-25-38
(Mi emj401)
 

This article is cited in 5 scientific papers (total in 5 papers)

On an inverse problem for a parabolic equation in a degenerate angular domain

M. T. Jenaliyeva, M. I. Ramazanovb, M. G. Yergaliyevac

a Institute of Mathematics and Mathematical Modeling, 125 Pushkin St, 050010 Almaty, Kazakhstan
b E.A. Buketov Karaganda State University, 28 Universitetskaya St, 100028 Karaganda, Kazakhstan
c Al-Farabi Kazakh National University, 71 al-Farabi Ave, 050040 Almaty, Kazakhstan
Full-text PDF (447 kB) Citations (5)
References:
Abstract: We consider a coefficient inverse problem for a parabolic equation in a degenerate angular domain when the moving part of the boundary changes linearly. We show that the inverse problem for the homogeneous heat equation with homogeneous boundary conditions has a nontrivial solution up to a constant factor consistent with an additional condition. The boundedness of this solution and this additional condition is proved. Moreover, the solution of the considered inverse problem is found in an explicit form and it is proved that the required coefficient is determined uniquely. It is shown that the obtained nontrivial solution of the inverse problem has no singularities and the additional condition also has no singularities.
Keywords and phrases: coefficient inverse problem, heat equation, degenerate domain, angular domain, parabolic equation.
Funding agency Grant number
Ministry of Education and Science of the Republic of Kazakhstan AP09258892
This research is funded by the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (grant no. AP09258892, 2021-2023).
Received: 21.07.2018
Revised: 24.06.2020
Bibliographic databases:
Document Type: Article
Language: English
Citation: M. T. Jenaliyev, M. I. Ramazanov, M. G. Yergaliyev, “On an inverse problem for a parabolic equation in a degenerate angular domain”, Eurasian Math. J., 12:2 (2021), 25–38
Citation in format AMSBIB
\Bibitem{DzhRamYer21}
\by M.~T.~Jenaliyev, M.~I.~Ramazanov, M.~G.~Yergaliyev
\paper On an inverse problem for a parabolic equation in a degenerate angular domain
\jour Eurasian Math. J.
\yr 2021
\vol 12
\issue 2
\pages 25--38
\mathnet{http://mi.mathnet.ru/emj401}
\crossref{https://doi.org/10.32523/2077-9879-2021-12-2-25-38}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000710833400003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85111509713}
Linking options:
  • https://www.mathnet.ru/eng/emj401
  • https://www.mathnet.ru/eng/emj/v12/i2/p25
  • This publication is cited in the following 5 articles:
    1. M. T. Jenaliyev, M. G. Yergaliyev, “On initial-boundary value problem for the Burgers equation in nonlinearly degenerating domain”, Applicable Analysis, 103:11 (2024), 2003  crossref
    2. Muvasharkhan Jenaliyev, Akerke Serik, Madi Yergaliyev, “Navier–Stokes Equation in a Cone with Cross-Sections in the Form of 3D Spheres, Depending on Time, and the Corresponding Basis”, Mathematics, 12:19 (2024), 3137  crossref
    3. U. A. Hoitmetov, “Integration of the loaded general Korteweg-de Vries equation in tne class of rapidly decreasing complex-valued functions”, Eurasian Math. J., 13:2 (2022), 43–54  mathnet  crossref  mathscinet
    4. S. A. Budochkina, H. P. Vu, “On an indirect representation of evolutionary equations in the form of Birkhoff's equations”, Eurasian Math. J., 13:3 (2022), 23–32  mathnet  crossref  mathscinet
    5. T. Sh. Kalmenov, A. K. Les, U. A. Iskakova, “Determination of density of elliptic potential”, Eurasian Math. J., 12:4 (2021), 43–52  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
    Statistics & downloads:
    Abstract page:193
    Full-text PDF :85
    References:37
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025