Processing math: 100%
Eurasian Mathematical Journal
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Eurasian Math. J.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Eurasian Mathematical Journal, 2013, Volume 4, Number 3, Pages 53–62 (Mi emj132)  

This article is cited in 11 scientific papers (total in 11 papers)

On spectral properties of a periodic problem with an integral perturbation of the boundary condition

N. S. Imanbaeva, M. A. Sadybekovb

a International Kazakh-Turkish University named after A. Yasawi, Sattarhanov street, 161200 Turkestan, Kazahstan
b Institute of Mathematics and Mathematical Modeling, Pushkin street, 125, 050010 Almaty, Kazakhstan
References:
Abstract: In this paper we consider the spectral problem for the Schrödinger equation with an integral perturbation in the periodic boundary conditions. The unperturbed problem is assumed to have the system of eigenfunctions and associated functions forming a Riesz basis in L2(0,1). We construct the characteristic determinant of the spectral problem. We show that the basis property of the system of root functions of the problem may fail to be satisfied under an arbitrarily small change in the kernel of the integral perturbation.
Keywords and phrases: eigenvalues, eigenfunctions, boundary value problem, Riesz basis, ordinary differential operator, characteristic determinant.
Received: 13.10.2010
Revised: 14.02.2013
Document Type: Article
Language: English
Citation: N. S. Imanbaev, M. A. Sadybekov, “On spectral properties of a periodic problem with an integral perturbation of the boundary condition”, Eurasian Math. J., 4:3 (2013), 53–62
Citation in format AMSBIB
\Bibitem{ImaSad13}
\by N.~S.~Imanbaev, M.~A.~Sadybekov
\paper On spectral properties of a~periodic problem with an integral perturbation of the boundary condition
\jour Eurasian Math. J.
\yr 2013
\vol 4
\issue 3
\pages 53--62
\mathnet{http://mi.mathnet.ru/emj132}
Linking options:
  • https://www.mathnet.ru/eng/emj132
  • https://www.mathnet.ru/eng/emj/v4/i3/p53
  • This publication is cited in the following 11 articles:
    1. Nurakhmetov D., Jumabayev S., Aniyarov A., “Control of Vibrations of a Beam With Nonlocal Boundary Conditions”, Int. J. Math. Phys.-Kazakhstan, 12:2 (2021), 45–49  crossref  isi  scopus
    2. Polyakov D.M., “Nonlocal Perturbation of a Periodic Problem For a Second-Order Differential Operator”, Differ. Equ., 57:1 (2021), 11–18  crossref  mathscinet  zmath  isi  scopus
    3. Nurlan S. Imanbaev, “On a problem that does not have basis property of root vectors, associated with a perturbed regular operator of multiple differentiation”, Zhurn. SFU. Ser. Matem. i fiz., 13:5 (2020), 568–573  mathnet  crossref
    4. O. Sh. Mukhtarov, K. Aydemir, “Minimization principle and generalized Fourier series for discontinuous Sturm-Liouville systems in direct sum spaces”, J. Appl. Anal. Comput., 8:5 (2018), 1511–1523  crossref  mathscinet  isi  scopus
    5. K. Aydemir, H. Olgar, O. Sh. Mukhtarov, F. Muhtarov, “Differential operator equations with interface conditions in modified direct sum spaces”, Filomat, 32:3 (2018), 921–931  crossref  mathscinet  isi  scopus
    6. M. A. Sadybekov, N. S. Imanbaev, “A Regular Differential Operator with Perturbed Boundary Condition”, Math. Notes, 101:5 (2017), 878–887  mathnet  crossref  crossref  mathscinet  isi  elib
    7. N. S. Imanbaev, M. A. Sadybekov, “About characteristic determinant of one boundary value problem not having the basis property”, International Conference Functional Analysis in Interdisciplinary Applications FAIA 2017, AIP Conf. Proc., 1880, eds. T. Kalmenov, M. Sadybekov, Amer. Inst. Phys., 2017, UNSP 050002  crossref  isi
    8. M. A. Sadybekov, N. S. Imanbaev, “Characteristic determinant of a boundary value problem, which does not have the basis property”, Eurasian Math. J., 8:2 (2017), 40–46  mathnet  mathscinet
    9. N. S. Imanbaev, “Characteristic determinant of the spectral problem for the Sturm-Liouville operator with the perturbed boundary value conditions”, Bull. Karaganda Univ-Math., 82:2 (2016), 68–73  isi
    10. N. Imanbaev, “Stability of the basis property of system of root functions of Sturm-Liouville operator with integral boundary condition”, Applications of Mathematics in Engineering and Economics, AMEE'16, AIP Conf. Proc., 1789, eds. V. Pasheva, N. Popivanov, G. Venkov, Amer. Inst. Phys., 2016, UNSP 040026  crossref  mathscinet  isi  scopus
    11. Imanbaev N.S., “On Stability of Basis Property of Root Vectors System of the Sturm-Liouville Operator With An Integral Perturbation of Conditions in Nonstrongly Regular Samarskii-Ionkin Type Problems”, Int. J. Differ. Equat., 2015, 641481  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Eurasian Mathematical Journal
    Statistics & downloads:
    Abstract page:528
    Full-text PDF :194
    References:79
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025