Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 1998, Volume 10, Issue 3, Pages 148–159
DOI: https://doi.org/10.4213/dm440
(Mi dm440)
 

This article is cited in 9 scientific papers (total in 9 papers)

On asymptotic expansions of Stirling numbers of the first and second kinds

A. N. Timashev
Full-text PDF (847 kB) Citations (9)
Abstract: We consider the problem of asymptotic estimation of Stirling numbers $s(n,N)$ of the first kind and Stirling numbers $\sigma(n,N)$ of the second kind under the condition that $n,N\to\infty$ so that
$$ 1<\alpha_0\le \alpha=\frac{n}{N}\le \alpha_1<\infty, $$
where $\alpha_0$, $\alpha_1$ are some constants. Under this condition, by making use of the saddle point method, we demonstrate that the coefficients of the negative powers of the form $N^{-m}$, $m=1,2,\dots$, in asymptotic expansions of the numbers $s(n,N)$ and $\sigma(n,N)$ in powers of $N^{-1}$ are determined from the representation in the form of a power series of a certain function that depends on the solution of a given non-linear differential equation of the first order with a given initial condition. These results allow us to show that these coefficients obey some linear recurrence relations in the complex plane. As corollaries, we give explicit formulas for the coefficient of $N^{-1}$.
Received: 21.04.1997
Revised: 18.05.1998
Bibliographic databases:
UDC: 519.2
Language: Russian
Citation: A. N. Timashev, “On asymptotic expansions of Stirling numbers of the first and second kinds”, Diskr. Mat., 10:3 (1998), 148–159; Discrete Math. Appl., 8:5 (1998), 533–544
Citation in format AMSBIB
\Bibitem{Tim98}
\by A.~N.~Timashev
\paper On asymptotic expansions of Stirling numbers of the first and second kinds
\jour Diskr. Mat.
\yr 1998
\vol 10
\issue 3
\pages 148--159
\mathnet{http://mi.mathnet.ru/dm440}
\crossref{https://doi.org/10.4213/dm440}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1673690}
\zmath{https://zbmath.org/?q=an:0973.11022}
\transl
\jour Discrete Math. Appl.
\yr 1998
\vol 8
\issue 5
\pages 533--544
Linking options:
  • https://www.mathnet.ru/eng/dm440
  • https://doi.org/10.4213/dm440
  • https://www.mathnet.ru/eng/dm/v10/i3/p148
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:1302
    Full-text PDF :428
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024