Loading [MathJax]/jax/output/SVG/config.js
Diskretnaya Matematika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskr. Mat.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnaya Matematika, 2007, Volume 19, Issue 4, Pages 132–138
DOI: https://doi.org/10.4213/dm982
(Mi dm982)
 

This article is cited in 4 scientific papers (total in 4 papers)

An enhanced algorithm to search for low-degree annihilators for a Zhegalkin polynomial

V. V. Baev
Full-text PDF (109 kB) Citations (4)
References:
Abstract: A Boolean function $g$ is said to be an annihilator of a Boolean function $f$ if $fg=0$. In some problems concerning finite automata, it is required to find non-zero annihilators of low algebraic degree for a function $f$.
In this paper we suggest Algorithm M2 which, given the Zhegalkin polynomial for a function $f$, yields a basis of the space of its annihilators of degree not exceeding $d$. Algorithm M2 is an enhancement of a previously known algorithm and allows in a series of cases to decrease calculations. The total complexity of Algorithm M2 is the same as for the previous algorithm.
Received: 18.05.2007
English version:
Discrete Mathematics and Applications, 2007, Volume 17, Issue 5, Pages 533–538
DOI: https://doi.org/10.1515/dma.2007.041
Bibliographic databases:
UDC: 519.7
Language: Russian
Citation: V. V. Baev, “An enhanced algorithm to search for low-degree annihilators for a Zhegalkin polynomial”, Diskr. Mat., 19:4 (2007), 132–138; Discrete Math. Appl., 17:5 (2007), 533–538
Citation in format AMSBIB
\Bibitem{Bae07}
\by V.~V.~Baev
\paper An enhanced algorithm to search for low-degree annihilators for a~Zhegalkin polynomial
\jour Diskr. Mat.
\yr 2007
\vol 19
\issue 4
\pages 132--138
\mathnet{http://mi.mathnet.ru/dm982}
\crossref{https://doi.org/10.4213/dm982}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2392701}
\zmath{https://zbmath.org/?q=an:05233562}
\elib{https://elibrary.ru/item.asp?id=9917193}
\transl
\jour Discrete Math. Appl.
\yr 2007
\vol 17
\issue 5
\pages 533--538
\crossref{https://doi.org/10.1515/dma.2007.041}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-37049034964}
Linking options:
  • https://www.mathnet.ru/eng/dm982
  • https://doi.org/10.4213/dm982
  • https://www.mathnet.ru/eng/dm/v19/i4/p132
  • This publication is cited in the following 4 articles:
    1. A. S. Zelenetsky, P. G. Klyucharev, “Boolean Functions with Affine Annihilators”, Mat. mat. model., 2021, no. 6, 1  crossref
    2. A. S. Zelenetsky, P. G. Klyucharev, “Affine Annihilator Finding Algorithm for Boolean Function”, Mat. mat. model., 2021, no. 1, 13  crossref
    3. S. N. Selezneva, “Multiaffine polynomials over a finite field”, Discrete Math. Appl., 31:6 (2021), 421–430  mathnet  crossref  crossref  mathscinet  isi  elib
    4. K. N. Koryagin, “Level structure of Zhegalkin polynomials, properties of test sets, and an annihilator search algorithm”, Comput. Math. Math. Phys., 50:7 (2010), 1267–1273  mathnet  crossref  mathscinet  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретная математика
    Statistics & downloads:
    Abstract page:719
    Full-text PDF :315
    References:58
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025