Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2024, Volume 31, Issue 2, Pages 108–135
DOI: https://doi.org/10.33048/daio.2024.31.769
(Mi da1348)
 

Additive differentials for ARX mappings with probability exceeding $1/4$

A. S. Mokrousov, N. A. Kolomeec

Novosibirsk State University, 2 Pirogov Street, 630090 Novosibirsk, Russia
References:
Abstract: We consider the additive differential probabilities of functions $x \oplus y$ and $(x \oplus y) \lll r,$ where $x, y \in \mathbb{Z}_2^n$ and $1 \leq r < n.$ The probabilities are used for the differential cryptanalysis of ARX ciphers that operate only with addition modulo $2^n,$ bitwise XOR ($\oplus$) and bit rotations ($\lll r$). A complete characterization of differentials whose probability exceeds $1/4$ is obtained. All possible values of their probabilities are $1/3 + 4^{2 - i} / 6$ for $i \in \{1, \dots, n\}.$ We describe differentials with each of these probabilities and calculate the number of these values. We also calculate the number of all considered differentials. It is $48n - 68$ for $x \oplus y$ and $24n - 30$ for $(x \oplus y) \lll r,$ where $n \geq 2.$ We compare differentials of both mappings under the given constraint. Tab. 6, bibliogr. 23.
Keywords: ARX scheme, differential probabilities, modulo addition, XOR, bit rotation.
Funding agency Grant number
Ministry of Science and Higher Education of the Russian Federation 075–15–2022–282
Received: 03.05.2023
Revised: 16.10.2023
Accepted: 22.12.2023
English version:
Journal of Applied and Industrial Mathematics, 2024, Volume 18, Issue 2, Pages 294–311
DOI: https://doi.org/10.1134/S199047892402011X
Document Type: Article
UDC: 519.7
Language: Russian
Citation: A. S. Mokrousov, N. A. Kolomeec, “Additive differentials for ARX mappings with probability exceeding $1/4$”, Diskretn. Anal. Issled. Oper., 31:2 (2024), 108–135; J. Appl. Industr. Math., 18:2 (2024), 294–311
Citation in format AMSBIB
\Bibitem{MokKol24}
\by A.~S.~Mokrousov, N.~A.~Kolomeec
\paper Additive differentials for ARX mappings with~probability exceeding~$1/4$
\jour Diskretn. Anal. Issled. Oper.
\yr 2024
\vol 31
\issue 2
\pages 108--135
\mathnet{http://mi.mathnet.ru/da1348}
\crossref{https://doi.org/10.33048/daio.2024.31.769}
\transl
\jour J. Appl. Industr. Math.
\yr 2024
\vol 18
\issue 2
\pages 294--311
\crossref{https://doi.org/10.1134/S199047892402011X}
Linking options:
  • https://www.mathnet.ru/eng/da1348
  • https://www.mathnet.ru/eng/da/v31/i2/p108
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024