Loading [MathJax]/jax/output/SVG/config.js
Diskretnyi Analiz i Issledovanie Operatsii
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Diskretn. Anal. Issled. Oper.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Diskretnyi Analiz i Issledovanie Operatsii, 2022, Volume 29, Issue 1, Pages 5–17
DOI: https://doi.org/10.33048/daio.2022.29.706
(Mi da1289)
 

Complexity of the max cut problem with the minimal domination constraint

V. V. Voroshilov

Dostoevsky Omsk State University, 55a Mir Avenue, 644077 Omsk, Russia
References:
Abstract: Let $G=(V,E,w)$ be a simple weighted undirected graph with nonnegative weights of its edges. Let $D$ be a minimal dominating set in $G.$ Cutset induced by $D$ is a set of edges with one vertex in the set $D$ and the other in $V\setminus D.$ The weight of a cutset is the total weight of all its edges. The paper deals with the problem of finding a cutset with maximum weight among all minimal dominating sets. In particular, nonexistence of polynomial approximation algorithm with ratio better than $|V|^{-\frac{1}{2}}$ in case of $\text{P}\ne\text{NP}$ is proved. Illustr. 3, bibliogr. 8.
Keywords: graph, cutset, dominating set, weighted graph, optimization problem, approximation.
Received: 19.02.2021
Revised: 01.12.2021
Accepted: 02.12.2021
Bibliographic databases:
Document Type: Article
UDC: 519.8+518.25
Language: Russian
Citation: V. V. Voroshilov, “Complexity of the max cut problem with the minimal domination constraint”, Diskretn. Anal. Issled. Oper., 29:1 (2022), 5–17
Citation in format AMSBIB
\Bibitem{Vor22}
\by V.~V.~Voroshilov
\paper Complexity of the max cut problem with~the~minimal domination constraint
\jour Diskretn. Anal. Issled. Oper.
\yr 2022
\vol 29
\issue 1
\pages 5--17
\mathnet{http://mi.mathnet.ru/da1289}
\crossref{https://doi.org/10.33048/daio.2022.29.706}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4523640}
Linking options:
  • https://www.mathnet.ru/eng/da1289
  • https://www.mathnet.ru/eng/da/v29/i1/p5
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Дискретный анализ и исследование операций
    Statistics & downloads:
    Abstract page:176
    Full-text PDF :83
    References:49
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025