Avtomatika i Telemekhanika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Avtomat. i Telemekh.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Avtomatika i Telemekhanika, 2014, Issue 5, Pages 143–158 (Mi at9099)  

This article is cited in 21 scientific papers (total in 21 papers)

Data Analysis

Forecasting nonstationary time series based on Hilbert–Huang transform and machine learning

V. G. Kurbatskya, D. N. Sidorovbac, V. A. Spiryaeva, N. V. Tomina

a Melentiev Energy Systems Institute, Siberian Branch, Russian Academy of Sciences, Irkutsk, Russia
b Irkutsk State University, Irkutsk, Russia
c National Research Irkutsk State Technical University, Irkutsk, Russia
References:
Abstract: We propose a modification of the adaptive approach to time series forecasting. On the first stage, the original signal is decomposed with respect to a special empirical adaptive orthogonal basis, and the Hilbert's integral transform is applied. On the second stage, the resulting orthogonal functions and their instantaneous amplitudes are used as input variables for the machine learning unit that employs a hybrid genetic algorithm to train an artificial neural network and a regressive model based on support vector machines. The efficiency of the proposed approach is demonstrated on real data coming from Nord Pool Spot and Australian National Energy Market.
Presented by the member of Editorial Board: E. Ya. Rubinovich

Received: 04.04.2012
English version:
Automation and Remote Control, 2014, Volume 75, Issue 5, Pages 922–934
DOI: https://doi.org/10.1134/S0005117914050105
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. G. Kurbatsky, D. N. Sidorov, V. A. Spiryaev, N. V. Tomin, “Forecasting nonstationary time series based on Hilbert–Huang transform and machine learning”, Avtomat. i Telemekh., 2014, no. 5, 143–158; Autom. Remote Control, 75:5 (2014), 922–934
Citation in format AMSBIB
\Bibitem{KurSidSpi14}
\by V.~G.~Kurbatsky, D.~N.~Sidorov, V.~A.~Spiryaev, N.~V.~Tomin
\paper Forecasting nonstationary time series based on Hilbert--Huang transform and machine learning
\jour Avtomat. i Telemekh.
\yr 2014
\issue 5
\pages 143--158
\mathnet{http://mi.mathnet.ru/at9099}
\transl
\jour Autom. Remote Control
\yr 2014
\vol 75
\issue 5
\pages 922--934
\crossref{https://doi.org/10.1134/S0005117914050105}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000335955000010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-84901256343}
Linking options:
  • https://www.mathnet.ru/eng/at9099
  • https://www.mathnet.ru/eng/at/y2014/i5/p143
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Avtomatika i Telemekhanika
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024