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Abstract

We prove that no 14-connected (resp. 30-connected) stably paral-
lelizable manifold N30 (resp. N62) of dimension 30 (resp. 62) with the
Arf-Kervaire invariant 1 can be smoothly embedded into R36 (resp. R83).

1 Closed stably parallelizable manifolds with a
nontrivial Arf�Kervaire invariant

Let us consider a closed stably framed n�dimensional manifold. Such a manifold
is presented by the pair (Nn,Ξ), where Nn is a closed manifold of the dimen-
sion dim(N) = n, and Ξ is an isomorphism of bundles Ξ : ν(N) = Rk × Nn,
where ν(N) is the k�dimensional normal bundle of Nn, k > n + 1 . A stably
parallelizable manifold is a stably framed manifold with the forgotten stable
framing.

Suppose that n = 2ℓ − 2 = 4l + 2 and that Nn is 2l�connected. Then Nn

is di�eomorphic to the connected sum of manifolds of the following three types
(see [Kr] for the proof and further references):

� closed manifold Σn, homotopically equivalent to the standard n�
dimensional sphere;

� product of two standard spheres S2l+1 × S2l+1;
� standard Arf-Kervaire manifold (constructed later).
A connected sum of two third type manifolds is di�eomorphic to the stan-

dard sum of some number of �rst and second type manifolds. The dimension
dim(H2l+1(N

n;Z/2)) is always even and equals to 2p, where p is the number of
the summands of second and third type. Following the theorem of Hill, Hop-
kins and Ravenel, third type manifold can be constructed only for ℓ = 5, 6 and
eventually 7 (see [H-H-R]).

De�nition 1.1. A 2l�connected manifold Nn, n = 4l + 2, is said to have
a nontrivial Arf�Kervaire invariant if n = 2ℓ − 2, ℓ = 5, 6 or 7, and Nn is
di�eomorphic to the connected sum of a third type manifold and some number
of �rst and second type manifolds.
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Standard Arf�Kervaire manifold

The third type manifold is based on the manifold M4l+2
0 , 4l + 2 = n. This

manifold was constructed by "plumbing" in [Br1, Ch. V, Theorem V.2.11.]
The manifold M4l+2

0 is well-de�ned for all nonnegative l, but the condition
∂M4l+2

0 = S4l+1 is ful�lled only for 4l + 2 = 2, 6, 14, 30, 62 and eventually 126.
For 4l + 2 ̸= 2, 6, 14, 30, 62 and eventually ̸= 126, the boundary ∂M4l+2

0 is
PL�homeomorphic but not di�eomorphic to the standard (4l+ 1)�dimensional
sphere. In these exceptional dimensions, the manifold N4l+2 is de�ned asM4l+2

0

with the standard (4l+ 2)-dimensional disk glued along the boundary ∂M4l+2
0 .

In the case n = 2, 6, 14, a second type manifold is obtained. In the case n =
30, 62 and eventually 126, the obtained manifold is of the third type. A simpli�ed
proof of existence ofM4l+2

0 for n = 62 appears in [L]. In [J-R] there is a remark,
that the manifold Nn of the third type is PL�embeddable into Rn+2.

The main result is formulated in the following theorem.

Theorem 1.2. (1) Let N30 (resp. N62) be an arbitrary closed 14-connected
(resp. 30-connected) stably parallelizable manifold with a nontrivial Arf�
Kervaire invariant. Then the product N30 × I (resp. N62 × I) with the in-
terval I = [0, 1] is not smoothly embeddable into the Euclidean space R46 (resp.
R94) provided that the corresponding embedding is equipped by a nondegenerate
normal �eld of 9�frames (resp. 10�frames) on the complement of the Cartesian
product of the interval I and a point N30×I\{pt}×I (resp. on N62×I\{pt}×I).

(2) No stably parallelizable manifold N30 (resp. N62) is smoothly embeddable
into the Euclidean space R36 (resp. R83).

Remark 1.3. Obviously, Assertion 2 of Theorem 1.2 follows from Assertion 1.
Indeed, the composition N30 ⊂ R36 ⊂ R46 provides the embedding N30 × I ×
D9 ⊂ R46, where D9 is the standard disk. The restriction of this embedding
to the submanifold N30 × I ⊂ N30 × I × D9 ensures the condition of stable
parallelizability in Assertion 2. Analogously, the composition N62 ⊂ R83 ⊂
R94 provides the embedding N62 × I × D10 ⊂ R94, and the restriction of this
embedding to the submanifold N62 × I ⊂ N62 × I ×D10 ensures the condition
of stable parallelizability in Assertion 2. Nevertheless, we give an independent
proof of Assertion 2 since this proof is simpler than the proof of Assertion 1.

Remark 1.4. Eccles constructed in [E3, Corollary 1.2] a stably parallelizable
30-dimensional (resp. 62-dimensional) manifold N30 (resp. N62) with the Arf�
Kervaire invariant 1, which is embeddable in R46

Remark 1.5. Other geometric applications of the Arf�Kervaire invariant, re-
lated to the problem of embeddability, can be found in [Ra].

Remark 1.6. A preliminary version of this paper was posted on the arXiv
[A-C-R].

2 Cobordism group of immersions and the Arf�
Kervaire invariant of stably framed manifolds

Let us denote the cobordism group of immersions of oriented n-manifolds in the
codimension 1 by Immfr(n, 1). The class of the regular cobordism of immersions
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f : Nn ↬ Rn+1 represents an element of this cobordism group. The set of these
elements is equipped with an equivalence relation of cobordance. It follows
by the Pontryagin-Thom construction [P], in the form proposed in [W], that
the group Immfr(n, 1) is isomorphic to the stable n-homotopy group of spheres.
First, we describe the Pontryagin-Thom construction. A stably framed manifold
is a pair (Nn,Ξ) where Nn is a smooth manifold and Ξ is a trivialization of the
normal bundle νN . Namely, Nn is di�eomorphic to a submanifold M in Rn+k.
Then the normal bundle νN is isomorphic to the trivial normal bundle νM and
Ξ is the chosen trivialization. The word "stably" means that k >> n (in fact
k ≥ n+ 2 su�ces).

It is convenient to introduce the direct limit k → +∞. The Pontryagin-
Thom construction [P, Ch. 6], gives the map F : Sn+k → Sk as a composi-
tion of the standard projection Sn+k → ME(k)(Nn) and the standard map
ME(k)(Nn) → Sk. Here ME(k)(Nn) (or M(Nn)) denotes the Thom space
of the trivial k�dimensional bundle. This space is homeomorphic to the k�fold
suspension of Nn

+ = Nn ∪ {x}, where x is a point. The base point pt ∈ Sk is
a regular value of the map F and the preimage of a small neighbourhood of
that point de�nes the framed manifold (Nn,Ξ), corresponding to the subspace
of zero section of M(Nn).

The homotopy class [F ] ∈ Πn is well-de�ned. Moreover, if F ′ : Sn+k → Sn

is another map, which is homotopic to F , and the base point pt is also a regular
value of F ′, then it can be constructed a framed manifold (N ′,Ξ′) analogously,
with a framed cobordism (W,ΞW ), connecting (N,Ξ) and (N ′,Ξ′). Therefore
the mapping [F ] 7→ [(Nn,Ξ)] de�nes an isomor�sm between the stable homo-
topical group of spheres and the cobordism group of stably framed manifolds.

By the Smale-Hirsch theorem [Hi] a stably framed manifold (Nn,Ξ) de�nes
an immersion f : Nn ↬ Rn. The immersion f is not de�ned uniquely; if f ′

is another immersion, corresponding to (Nn,Ξ), then f and f ′ are regularly
cobordant. If (N ′n,Ξ′) is cobordant to (Nn,Ξ), then the corresponding im-
mersion f ′ : N ′n ↬ Rn, is an element of the same regular cobordism class as
the immersion f . The mapping [(Nn,Ξ)] 7→ [f ], constructed by Hirsch and
the mapping [F ] 7→ [(Nn,Ξ)], constructed by Pontryagin, de�ne the isomor-
phism between the cobordism group of immersions Immfr(n, 1), and the stable
homotopy group of spheres Πn, constructed by Wells.

Consider the case n = 4l + 2.
De�nition of the Z/2-quadratic form of an immersion and its Arf-

invariant. Let f : N4l+2 ↬ R4l+3 be the immersion, representing an element in
the group Immfr(4l+2, 1). The homology group H2l+1(N

4k+2;Z/2) is denoted
shortly by H. By the Poincar�e duality the bilinear nondegenerate form b :
H ×H → Z/2 is well-de�ned.

Take the map S4l+2+k →M(N4l+2
+ ), de�ned by the Pontryagin�Thom con-

struction. Obviously, the map ful�lls the conditions of Theorem 1.4 [Br], hence
a quadratic form q : H → Z/2, associated with the form b, can be de�ned.
De�ne the Arf -invariant Arf(H, q) as the equivalence class of q in the Witt
group of quadratic forms [Br1, Sect. 4]. It turns out that Arf(H, q) is an in-
variant of the regular cobordism class of the immersion f . It is said to be the
Arf�Kervaire invariant of f . Hence, by the Wells theorem, that invariant de�nes
a homomorphism of groups Θ : Immfr(4l + 2, 1) −→ Z/2, see [Br, Sect. 6] and
[K-M, Sect. 8].

The form q can be constructed in a di�erent way. Take a cycle x ∈ H. By
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the Thom theorem there exist a (possibly nonoriented) manifold X2l+1 and a
map iX : X2l+1 → N4l+2 such that iX,∗([X]) = x, where [X] is the fundamental
class of the manifold X. Because of general position, it can be assumed without
losing generality that the map f ◦ iX : X2l+1 → N4l+2 is an immersion with
only �nitely many transversal self-intersections. Denote the self-intersection
points of the immersion iX by {x1, . . . , xs}. For each point xi there exists a
neighbourhood consisting of two 2l + 1�disks intersecting in xi.

Perform a surgery to obtain a manifold Y 2l+1 ⊂ N4l+2 such that also
iY,∗([Y ]) = x, where iY : Y 2l+1 ⊂ N4l+2 is the inclusion. To this aim re-
move both disks and glue their boundaries by a 1-handle. The idea of such a
surgery in the case l = 0 is known from [P; Ch. 15, Theorem 22]. Take the
immersion f : N4l+2 ↬ Rn and consider the map jY = f ◦ iY : Y 2l+1 ⊂ Rn. By
the general position argument jY is also an embedding and is equipped with a
cross-section ξY of the normal bundle νjY . This cross-section is de�ned by the
oriented normal bundle of the immersion f along the cycle.

The linking number of the framed embedding (iY , ξY ) is denoted by
lk(iY , ξY ) (it is de�ned as the linking number between iY (Y ) and its copy along
ξY ). De�ne

q(x) = lk(iY , ξY ) (mod 2). (1)

Lemma 2.1. The function q : H → Z/2, given by q(x) = lk(iY , ξY )(mod 2),
is well de�ned. It coincides with the Browder function as constructed in [Br;
Lemma 1.2].

Corollary 2.2. The function q is the quadratic form, associated to the bilinear
form b.

Proof of Corollary 2.2

The proof can be found in [Br; Theorem 1.4].

Proof of Lemma 2.1

Consider a stably framed cobordism (W 4l+3,ΞW ), connecting given pairs
(N4l+2,Ξ) and (N4l+2

1 ,Ξ1) of stably framed manifolds. First suppose that the
following conditions are true:

1. the manifold N4l+2
1 is 2l�connected;

2. the cobordism W consists of i�handles, 1 ≤ i ≤ 2l.
The construction of the cobordism W is based on spherical surgery as de-

scribed in the section 5 of [K-M]. In Section 1 of [N] the spherical surgery is
developed for a more general situation. It follows from condition 2 that the map-
pingH2l+1(N

4l+2;Z/2) → H2l+1(W
4l+3;Z/2), which is induced by the inclusion

N4l+2 ⊂ W 4l+3 , is an isomorphism while the mapping H2l+1(N
4l+2
1 ;Z/2) →

H2l+1(W
4l+3;Z/2), induced by the inclusion N4l+2

1 ⊂ W 4l+3, is an epimor-
phism.

Let q′ be the function, constructed by Browder. Under condition 1, the
function q′ has the following geometric meaning (see [Br; the last paragraph of
the proof of Theorem 3.2 and the corresponding reference]). By the Hurewicz
theorem, an element x ∈ H2l+1(N

4l+2
1 ;Z/2) can be realized as a map of spheres:
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φ : S2l+1 → N4l+2
1 . Furthermore, φ can be realized in its homotopy class by an

embedding φ0 : S2l+1 ⊂ N4l+2
1 .

Consider the embedding IN1
◦ φ0 : S2l+1 → N4l+2

1 ⊂ R4l+2+k, where IN1
is

the inclusion which parametrizes the manifold N4l+2
1 . The embedding IN1 ◦φ0 is

equipped by the normal vector �eld of k�frames. Then by the Hirsch theorem the
immersion IN1

◦φ0 is regularly homotopic to the immersion into standard space
R4l+2 ⊂ R4l+2+k. Hence the framing vectors are parallel complements to the
subspace of coordinate axes. This immersion is denoted by φ̄0 : S2l+1 ↬ R4l+2.

The stable Hopf invariant of the immersion φ̄0 is de�ned as the number
of transversal self-intersection points. This number is denoted by q′(x) of the
embedding φ0. It depends neither on the choice of the embedding φ0 in the
homotopy class of φ nor on the choice of the map φ realizing the homology class
x.

Apply the Hirsch theorem to the embedding iY : S2l+1 ⊂ R4l+3, equipped
with the cross-section ξY , to construct the immersion i′Y : S2l+1 ↬ R4l+2. The
value of lk(iY , ξY ) in the right part of formula (1) coincides with the parity
of number of self-intersection points of the immersion i′Y . This proves that
under condition 1 the function q, de�ned in 1, coincides with the function q′,
constructed by Browder.

Now we prove Lemma 2.1 in the general case. Let us consider the cobordism
W under condition 2. Take an arbitrary element x ∈ H2l+1(N

4l+2;Z/2) and an
element x1 ∈ H2l+1(N

4l+2
1 ;Z/2) so that the homological class x + x1 is trivial

in H2l+1(W
4l+3;Z/2). It follows by [Br, Lemma 3.1.] that q′(x) = q′(x1). We

have proved that q′(x1) = q(x1). Let us prove the following equality

q(x) = q(x1). (2)

Let the homology class x be equal to the image of the fundamental class
under the embedding iY : Y 2l+1 ⊂ N4l+2 and let the homology class x1 be equal
to the image of the fundamental class under the embedding iY1

: Y 2l+1
1 ⊂ N4l+2

1 .
Suppose that the mapping of polyhedron iZ : Z2l+2 → W , which realizes the
singular boundary of homology classes x, x1, is represented by the submanifolds
Y 2l+1 and Y 2l+1

1 .
It is well known that the polyhedron W can be chosen to be a manifold in

the complement of some subpolyhedron of codimension 2. Consider the sin-
gular points and the self-intersection curve of the polyhedron iZ(Z

2l+2. The
self-intersection curve of the polyhedron iZ(Z

2l+2) lies outside the considered
codimension 2 subpolyhedron of the polyhedron Z2l+2. The boundary of self-
intersection curve is the set of critical points of the map iZ , and the number
of these points is even. Modify the polyhedron Z2l+2 on its regular part and
modify the map iZ by surgery in 1-handles in such a way that the map iZ has
no critical points.

Consider the immersion f : N4l+2 ↬ R4l+3 × {0}, the immersion f1 :
N4l+2

1 ↬ R4l+3 × {1} and the immersion F : W 4l+3 ↬ R4l+3 × [0, 1], such
that its restriction on the upper and the lower components of boundary co-
incides with the immersions f and f1, respectively. Consider the pairs of
embeddings and corresponding normal sections (iY : Y ⊂ R4l+3 × {0}; ξY ),
(iY1

: Y1 ⊂ R4l+3 × {1}; ξY1
). Take the pair of embedding and the correspond-

ing normal section (iZ : Z2l+2 ↬ R4l+3 × [0, 1], ξZ), such that its restriction
to both components of boundary coincides with the pairs (iY , ξY ), (iY1

; ξY1
),

respectively.

5



Obviously, the self-linking numbers of boundary embeddings with given nor-
mal sections are equal modulo 2. Move iY (Y ) along ξY ; the obtained manifold
is denoted by (iY (Y ))′ . Analogously, denote by (iY1

(Y1))
′ the manifold ob-

tained from iY1(Y1) by sliding along ξY1 and by (iZ(Z))
′ the manifold obtained

from iZ(Z) by sliding along ξZ . The self-linking number of framed embed-
ding (iY1

, ξY1
) is de�ned as the parity of number of points of self-intersection of

the manifold (iY1
(Y1))

′ with the manifold iY1
(Y1) by homotoping (iY1

(Y1))
′ to

in�nity.
The self-linking number of (iY1 , ξY1) is de�ned similarly. Both self-linking

numbers are congruent modulo 2 since (iZ(Z))
′ intersects iZ(Z) in an even

number of points and when homotoping (iZ(Z))
′ to in�nity, the intersection of

(iZ(Z))
′(t) and (iZ(Z)) is a collection of curves lying completely in the regu-

lar part of polyhedra Z ′ and Z. Therefore, the boundary of this 1-manifold
consists of an even number of points and these points are intersection points of
two families of the boundary polyhedra. Formula (2) and Lemma 2.2 are thus
proved.

The cobordism group of stably skew-framed immersions. Let
(φ,ΨL) be a pair consisting of a (2l+1)-dimensional closed manifold φ : L2l+1 ↬
R4l+2 and of a skew-framing ΨL of the normal bundle νφ, i.e., an isomorphism
ΨL : νφ = (2l+1)κ, where κ is the orientation line bundle L2l+1. It means that
w1(κ) = w1(L

2l+1). The cobordism relation of pairs is the standard one.
The set of all such pairs forms an abelian group Immsf (2l + 1, 2l + 1) with

respect to the operation of disjoint union. The Pontryagin-Thom construction
in the form of Wells can be applied to this cobordism group. It induces the
following isomorphism

Immsf (2l + 1, 2l + 1) ≡ Π4l+2(P2l+1),

where P2l+1 = RP∞/RP2l is the skew projective space and Π4l+2(P2l+1) =
limt→+∞ π4l+2+t(Σ

tP2l+1) is the stable homotopy group of the 4l + 2-
dimensional space P2l+1. [A-E2].

The connecting homomorphism δ. De�ne the homomorphism

δ : Immfr(4l + 2) → Immsf (2l + 1),

which is called the connecting homomorphism. It is a modi�cation of the trans-
fer homomorphism of Kahn-Priddy.( [E1]).

Let the immersion f : N4l+2 ↬ R4k+3 represent an element in the
group Immfr(4l + 2, 1). Construct a skew-framed immersion (φ,ΨL), where
φ : L2l+1 ↬ R4l+2. Consider the immersion I ◦ f , where I : R4k+3 ⊂ R6l+3

denotes the standard embedding. The immersion I ◦ f is equipped with the
standard framing. Let g : N4l+2 ↬ R6l+3 be an immersion, obtained from f by
a small deformation which ensures general position. Hence the immersion g self-
intersects transversally. The double point manifold of immersion g is denoted
by L2l+1.

Let h : L2l+1 ↬ R6l+3 be the parametrizing immersion of L2l+1. The normal
bundle νh of immersion h is naturally isomorphic to the bundle lε⊕ lκ, where κ
is the line bundle over L2l+1, which is associated to the canonical 2-fold covering
of a double point manifold. By the Hirsch theorem there exists an immersion
h1 regularly homotopic to hhaving its image in the subspace R4l+2 ⊂ R6l+3.
The regular homotopy between the immersions h and h1 can be extended to
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the regular homotopy of normal bundles, hence the direct summands of nor-
mal bundle are parallel to the complementary coordinate axes of the subspace
R4l+2 ⊂ R6l+3.

The immersion h1 : L2l+1 ↬ R4l+2 is equipped with a skew-framing of
the normal bundle, de�ned by the bundle isomorphism ΨL : kκ ≡ νh1 . Starting
from the immersion f , we have constructed the skew-framed immersion (h1,ΨL).
De�ne the element δ([f ]) ∈ Immsf (2l+1, 2l+1) to be the regular skew-framed
cobordism class [(h1,ΨL)].

The Browder-Eccles invariant. An alternative de�nition of the Arf-
Kervaire invariant of framed immersions was given by Eccles in [E1]. Such a
de�nition uses the characteristic numbers of double point manifolds and is based
on a theorem of Browder ([Br]). In this theorem the Arf-Kervaire invariant is
constructed by means of the Adams spectral sequence. The following simplest
version of the de�nition was given by Eccles in [A-E1].

De�nition 2.3. De�ne the Browder-Eccles invariant Θ̄(f) of a framed immer-
sion f by the formula

Θ̄(f,ΞN ) = h ◦ δ(f,ΞN ) (mod 2),

where h ◦ δ(f,ΞN ) = h(I ◦ f) is the number of self-intersection points of the
immersion I ◦ f .

3 Cobordism groups of stably skew-framed im-
mersions

In this section we de�ne new variants of cobordism groups, namely the cobor-
dism groups of stably framed immersions (stably skew-framed immersions, re-
spectively), i.e., the immersions which are not framed in their image�Euclidean
space but are framed only in ambiental Euclidean spaces of su�ciently big di-
mensions. Such a framing (skew-framing, respectively) is said to be the stable
framing (stable skew-framing, respectively). Cobordism groups of stably framed
and stably skew-framed immersions generalize intermediate cobordism groups,
as introduced in [E3]. The Arf-Kervaire and the Browder-Eccles invariants can
be generalized to the invariants de�ned on the cobordism group of stably framed
immersions.

The new invariants are called the twisted Arf-Kervaire invariant and the
twisted Browder-Eccles invariant, respectively. The de�nition of the twisted
Arf-Kervaire invariant is closely connected to the de�nition of Arf-changeable
invariant of framed immersions in the sense of Jones and Rees [J-R].

De�nition of stably framed cobordism groups Immstfr(4l + 2, 2l + 1).

Let (f,ΞN ) be a pair, where f : N4l+2 ↬ R6l+3 is an immersion in the codi-
mension 2l+1, ΞN be a stable framing of the manifold N4l+2, i.e., a framing of
the normal bundle of the composition I ◦ f : N4l+2 ↬ R6l+3 ⊂ Rr, r ≥ 8l + 6.

The set of pairs described above is equipped by an equivalence relation, which
is given by the standard relation of cobordism. Up to the cobordism relation
the set of pairs generates an Abelian group whose operation is determined by
the disjoint union. This group is denoted by Immstfr(4l + 2, 2l + 1).
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De�nition of stably skew-framed cobordism groups Immstsf (2l+1, 2l+
1).

Let (φ,Ψ) be a pair, where φ : L2l+1 ↬ R4l+2 is an immersion in codimension
2l+1, ΨL a stable skew-framing of the manifold L2l+1 in codimension 2l+1, i.e.,
a skew-framing of the normal bundle of the composition I ◦f : L2l+1 ↬ R4l+2 ⊂
Rr, r ≥ 4l+4 with the bundle (2l+1)κ⊕ (r− 2l− 1)ε, where ε is a trivial line
bundle on L2l+1, κ is a given line bundle over L2l+1, which coincides with the
oriented line bundle over L2l+1, since w1(L

2l+1) = w1(νφ) = w1((2l + 1)κ) =
w1(κ).

The set of pairs described above is equipped by an equivalence relation,
which is de�ned by the standard regular cobordism. The set of equivalence
classes generates an Abelian group whose operation is determined by the disjoint
union. This group is denoted by Immstsf (2l + 1, 2l + 1).
Homomorphisms A : Immfr(4l + 2, 1) −→ Immstfr(4l + 2, 2l + 1), B :
Immstfr(4l + 2, 2l + 1) → Immfr(4l + 2, 1). An arbitrary immersion f :
N4l+2 ↬ R4l+3 determines the immersion (I ◦ f,ΞN ) in codimension 2l + 1,
I : R4l+3 ⊂ R6l+3, which is stably framed in the ambient space R6l+3 ⊂ Rn.
The homomorphism A is de�ned.

An arbitrary stably framed immersion (f : N4l+2 ↬ R6l+3,ΨN ) obviously
induces the immersion into the space Rr, r > 8l + 6.

The Hirsch theorem, applied to this immersion of codimension r − 6l −
3, ensures the existence of a framed immersion (φ,ΞN ), where φ : N4l+2 ↬
R4l+3. Now de�ne B([(f,ΨN )]) = [(φ,ΞN )] ∈ Immfr(4l + 2, 1). Obviously, by
construction B ◦A = Id : Immfr(4l + 2, 1) → Immfr(4l + 2, 1).

Twisted Arf-Kervaire invariant Θst : Immstfr(4l + 2, 2l + 1) −→ Z/2.
We generalize the Arf-Kervaire homomorphism Θ : Immfr(4l + 1, 1) → Z/2
and de�ne a homomorphism Θst : Immstfr(4l + 2, 2l + 1) → Z/2 provided that
2l+1 ̸= 1, 3, 7, called the twisted Arf-Kervaire invariant such that the following
diagram commutes:

Immfr(4l + 2, 1)
A−→ Immstfr(4l + 2, 2l + 1)

↘ Θ ↙ Θst

Z/2 .

(1)

Auxiliary homomorphism π : H2l+1(N
4l+2;Z/2) → Z/2, 2l + 1 ̸= 1, 3, 7. It

is known that for 2l + 1 ̸= 1, 3, 7 there exist exactly two stably trivial S2l+1-
dimensional vector SO�bundles (this fact is applied in the proof of Lemma 8.3
[K-M]). One of these bundles is trivial; we denote it by E(2l + 1). The other
bundle is nontrivial, and coincides with the tangent bundle T (S2l+1) over the
sphere S2l+1. We need a generalization of this fact to the case of a (2l + 1)�
dimensional stably trivial bundle over an arbitrary closed (4l + 2)�dimensional
manifold, possibly nonoriented.

LetM2l+1 be a closed, possibly nonoriented manifold, ξ a SO(2l+1)�bundle
over M2l+1 such that it is trivial as a stable SO�bundle. Let M2l+1

1 and ξ be
another manifold and a SO(2l+1)�bundle as above, respectively. LetW 2l+2 be
a (2l + 2)�dimensional polyhedron, such that it is a manifold in the exterior of
the codimension 2 skeleton. Let the polyhedron W realize a homology between
the fundamental classes of the manifolds M2l+1 and M2l+1

1 , i.e. ∂W 2l+2 =
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M2l+1∪M2l+1
1 . In addition, suppose that there exists a stably trivial SO(2l+1)�

bundle Ξ over W 2l+2 such that the restrictions of Ξ on M2l+1 and on M2l+1
1

coincide with the bundles ξ and ξ1, respectively.

Lemma 3.1. For an arbitrary above described pair (M2l+1, ξ) there exists an
obstruction c(M, ξ) ∈ Z/2 to the trivialization of the bundle ξ. Moreover,
c(M2l+1, ξ) = c(M2l+1

1 , ξ1).

Corollary 3.2. Let f : M2l+1 → S2l+1 be a map of a closed manifold to
the standard sphere such that deg(f) = 1 (mod 2). Let ξ be a stably trivial
SO(2l+ 1)�bundle over S2l+1 such that c(S2l+1, ξ) = 1. Then f∗(ξ) is a stably
trivial SO(2l + 1)�bundle over M2l+1 and c(M2l+1, f∗(ξ)) = 1 (mod 2).

Proof of Corollary 3.2.

The corollary follows from the fact that there exists a homology between f∗([M ])
and [S], where [M ] and [S] are the (2l + 1)-dimensional fundamental classes of
M2l+1 and S2l+1.

Proof of Lemma 3.1.

Let (M2l+1, ξ) be the pair described in the preamble of lemma. Denote by
M [2l] ⊂ M2l+1 the complement of the highest (2l + 1)�dimensional cell in the
skeleton of a cellular decomposition ofM2l+1. By the dimensionality argument,
the restriction of ξ on M [2l] is a trivial bundle. Hence there exists a map
f : (M2l+1,M [2l]) → (S2l+1, pt), such that f∗(ψ) = ξ, where (S2l+1, ψ) is a
bundle over S2l+1, satisfying the conditions of Lemma 3.1.

In the case when M2l+1 = S2l+1, Lemma 3.1 is true since in the proof of
Theorem 3.2 in [Br] the obstruction (S2l+1, ξ) is constructed by the correspond-
ing functional cohomological operation. De�ne (M2l+1, ξ) = (S2l+1, ψ). Let
(M2l+1

1 , ξ1) be the second pair described above and (W 2l+2,Ξ) the homology,
connecting (M2l+1, ξ) and (M2l+1

1 , ξ1). If c equals to zero for both pairs, Lemma
3.1 is proved.

Suppose that for at least one pair � say (M2l+1, ξ) � the value of the obstruc-
tion (M2l+1, ξ) is 1. Consider the handle (cell) decomposition of the cobordism
(W 2l+2,M2l+1). The index of handles can be restricted to ≤ 2l (the dimension
of handles to 2l + 1) as in the case when W 2l+2 is a smooth manifold. Indeed,
the handle (cell) decomposition of (W 2l+2,M2l+1) can be chosen so that all
(2l + 2)�dimensional cells retract to the (2l + 1)�skeleton of the polyhedron
W 2l+2 without the (2l + 1)�dimensional cells of the upper base M2l+1

1 .
De�ne the map F : (W 2l+2,M2l+1) → (S2l+1 × I, S2l+1 × {0}) such that

F ∗π∗(ψ) = Ξ, (3)

where π : S2l+1 × I → S2l+1 is a projection onto the lower base. The map F
can be extended to the (2l)�dimensional handles uniquely up to homotopy. The
map F can be extended also to the (2l + 1)�dimensional handles, but possibly
nonuniquely. By assumption, c(S2l+1, ψ) = 1. Hence the extension of the map
F to the (2l+1)�dimensional handles can be realized in a way that the condition
3 be true. Now on the upper base of the cobordism f∗1 (ψ) = ξ1, therefore by
the de�nition, c(M2l+1

1 , ξ1) = 1. Lemma 3.1 is thus proved.
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Let (f : N4l+2 ↬ R6l+3,ΞN ) be a pair de�ning an element of the group
Immstfr(4l+2, 2l+1). Consider an arbitrary cycle x ∈ H = H2l+1(N

4l+2;Z/2).
It is represented by an embedding iY : Y 2l+1 → N4l+2. Denote shortly by ξ the
bundle i∗Y (νf ), where νf is the normal bundle of an immersion f . Since νf is a
stably trivial bundle (because the manifold N4l+2 is stably framed by Ξ), for the
pair i∗Y (νf ) the obstruction (Y 2l+1, ξ) is de�ned, provided that 2l + 1 ̸= 1, 3, 7.

De�ne the mapping

π : H2l+1(N
4l+2;Z/2) → Z/2 (4)

given by the formula π(x) = c(Y 2l+1, ξ), y ∈ H = H2l+1(N
4l+2;Z/2). Lemma

3.1 implies that the value of π(x) does not depend on the choice of the manifold
Y 2l+1 and on the choice of the embedding lx, which realizes the given cycle x.
It can be easily veri�ed that the mapping in 4 is a homomorphism.

De�nition 3.3. Let q : H → Z/2, H = H2l+1(N
4l+2;Z/2), be the quadratic

form de�ned in 1 for a stably framed manifold (N4l+2,Ξ). For 2l + 1 ̸= 1, 3, 7
de�ne the twisted quadratic form qtw by the formula qtw = q + π : H → Z/2.
The Arf invariant of this twisted quadratic form de�nes a homomorphism Θst :
Immstfr(4l + 2, 2l + 1) −→ Z/2, which is said to be the twisted Arf-Kervaire
invariant.

Twisted Browder-Eccles invariant. De�ne the invariant Θ̄st : Immstfr(4l+
2, 2l + 1) → Z/2, which is said to be the twisted Browder-Eccles invariant,
starting by the construction of the homomorphism

δst : Immstsf (4l + 2, 2l + 1) → Immstsf (2l + 1, 2l + 1). (5)

Suppose that an element of the group Immstfr(4l + 2, 2l + 1) is represented
by the pair (f : N4l+2 ↬ R6l+3,Ξ). The double point manifold of immer-
sion f is denoted by L2l+1. This manifold is equipped by the parametrizing
immersion φ′ : L2l+1 ↬ R6l+3. The corresponding normal bundle νφ′ admits
(for a su�ciently big natural k) a stable isomorphism Ψ′ : νφ′ ⊕ kε ⊕ kκ =
(2l + 1 + k)ε⊕ (2l + 1 + k)κ.

The stable isomorphism Ψ′ de�nes a stable isomorphism ΨL : νL ⊕ kε =
(2l+ 1)κ⊕ kε, where by νL is denoted the (2l+ 1)�dimensional normal bundle
over L. By the Smale-Hirsch construction an immersion φ : L2l+1 ↬ R4l+2 and
a stably skew-framing ΨL of the normal bundle of this immersion are de�ned.
De�ne δst([(f,Ξf )]) to be the element of the group Immstsf (2l + 1, 2l + 1)
corresponding to the pair (φ,ΨL).

Consider the homomorphism Immstsf (2l+1, 2l+1)
h−→ ImmD4(0, 4l+2) =

Z/2, de�ned as the parity of the number of double points of stably skew-framed
immersions (this invariant is called the stably Hopf invariant). The Browder-

Eccles invariant Θ̄st is de�ned as the composition Immstfr(4l + 2, 2l + 1)
h◦δst−→

ImmD4(0, 4l + 2) = Z/2.
Subgroup Immstfr(4l + 2, 2l + 1)∗ ⊂ Immstfr(4l + 2, 2l + 1). De�ne an
auxiliary subgroup Immstfr(4l + 2, 2l + 1)∗ ⊂ Immstfr(4l + 2, 2l + 1) as the
complete preimage δ−1(Immsf (2l+ 1, 2l+ 1) ⊂ Immstsf (2l+ 1, 2l+ 1)) of the
homomorphism (5).

It is convenient to introduce the following equivalent geometrical de�nition
of the subgroup Immstfr(4l + 2, 2l + 1)∗. This de�nition is valid for all the
natural l ≥ 4 but not for l = 0, 1, 3.
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The pair (f : N4l+2 ↬ R6l+3,ΞN ) represents an element x ∈ Immstfr(4l +
2, 2l + 1)∗ if the following is true.

Take the pair (φ : L2l+1 ↬ R4l+2,ΨL) representing the element δst(x); here
L2l+1 is the double point manifold of the immersion f . Consider the canonical
covering L̄2l+1 → L2l+1 of the double point manifold L2l+1 (details can be
found in [A]). Let ḡ : L̄2l+1 ↬ N4l+2 be the parametrizing immersion, [L̄] ∈
H = H2l+1(N

4l+2;Z/2) be the cycle obtained as the image of the fundamental
class of L̄2l+1 by the immersion ḡ. Consider the value π([L̄]), where π : H → Z/2
was de�ned in 4.

Without losing generality we may assume that the stably framed immersion
(f,Ξ) is chosen from the regular cobordism class so that the manifold L̄2l+1

is connected. This goal can be achieved through the 1-handles surgery on the
double point manifold of immersion f . The techniques of such a surgery was
invented in [H]. Then the condition x ∈ Immstsf (4l + 2, 2l + 1)∗ is equivalent
to π([L̄2l+1]) = 0.

The last condition is equivalent to the fact that the pull-back ḡ∗νf over
L̄2l+1 of the normal bundle νf is not only stably trivial but it is also trivial
(in the case l = 0, 1, 3 the normal bundle νf is always trivial). It means that
the immersion φ : L2l+1 ↬ R4l+2 is not only stably skew-framed but it is
also skew-framed. This is the equivalent geometrical de�nition of the subgroup
Immstfr(4l + 2, 2l + 1)∗.

For convenience, all homomorphisms which have been constructed, include
into the common commutative diagram:

Immfr(4l + 2, 1)
A,B←→ Immstfr(4l + 2, 2l + 1)∗ ⊂ Immstsf (4l + 2, 2l + 1)

↓ δ ↓ δst ↓ δst

Immsf (2l + 1, 2l + 1) = Immsf (2l + 1, 2l + 1) ⊂ Immstsf (2l + 1, 2l + 1)

↓ h ↓ h

Z/2 = ImmD4(0, 4l + 2) = ImmD4(0, 4l + 2)

4 Arf-Kervaire and Browder-Eccles (twisted) ho-
momorphisms coincide

The following lemma is necessary for our proof of Theorem 1.2

Lemma 4.1. The twisted Arf-Kervaire homomorphism Θst : Immstfr(4l +
2, 2l + 1) → Z/2 coincides with the twisted Browder-Eccles homomorphism
Θ̄st : Immstfr(4l+2, 2l+1) → Z/2, on the subgroup Immstfr(4l+2, 2l+1)∗ ⊂
Immstfr(4l + 2, 2l + 1).

We shall derive Lemma 4.1 from the following lemma.

Lemma 4.2. The homomorphisms Θst and Θ̄st coincide on the subgroup
(ImA = KerB) ∩ Immstfr(4l + 2, 2l + 1)∗ ⊂ Immstfr(4l + 2, 2l + 1).

Proof of Lemma 4.2. From the main result of [E1] reformulated in [A-E1],
in the required form, it follows that the homomorphisms Θst and Θ̄st coincide
on the subgroup ImA ⊂ Immstfr(4l + 2, 2l + 1)∗.
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Proof of Lemma 4.1. Let (f : N4l+2 ↬ R6l+3,ΨN ) be a stably framed
immersion. The double point manifold of this immersion equipped with the
stable skew-framing will be denoted by (L2l+1,ΞL). Let η :W 4l+3 → R6l+3×R1

+

be a generic mapping of a stably parallelized manifold (W 4l+3,ΨW ) de�ning the
boundary of stably framed manifold (N4l+2,Ψ) but not the immersion f itself,
generally. The dimension of the critical point manifold Σ of η equals to 2l + 1;
this is less than half of dimension of the manifold�preimage W 4l+3. The critical
points of map η are of the type Σ1,0.

By the Moren theorem (see [A-V-G, Ch. 1, Paragr. 9, Sect. 6, the case
k = 2]) the critical point manifold has the normal form called the extended
Whitney umbrella. The formulae describing the singularities of Whitney um-
brella Rs → R2s−1 can be found in [P, Ch. 1, Paragr. 4]. The notion "extended"
means the inclusion of the standard singularity of umbrella into the identical
polyparametrical collection of maps.

One may assume w. l. o. g., after a corresponding repair of the singularity
of map η, that the critical point manifold Σ satis�es the following properties.

(1) Σ is connected with connected canonical double covering Σ̄.
(2) η(Σ) belongs to the hyperspace R6l+3×{1} and the double point manifold

K2l+2 of map η with the boundary ∂K2l+2 = L2l+1∪Σ2l+1 is regular in a small
neighborhood of the boundary with respect to the height function on R1

+ in
such way that the subspace R6l+3 ×{1} is higher than the manifold (i.e. K2l+2

immerses into the subspace [+ε, 1−ε]×R6l+3 outside its regular neighborhood.
Let η1−ε : N

4l+2
1−ε ↬ R6l+3×{1−ε} be the immersion de�ned as the restriction

of η on the complete preimage of the hyperspace R6l+3 × {1− ε}. Let L2l+1
1−ε be

the component of the double point manifold η1−ε(N
4l+2
1−ε ) in the neighborhood of

the critical point boundary Σ2l+1 of K2l+2. From the assumption π(ξ) = 0 we
may deduce that the normal bundle νL1−ε

of the manifold L2l+1
1−ε is decomposed

into the direct sum of the trivial bundle νε = (2l + 1)ε and a nontrivial bundle
νκ = νε ⊗ κ, where κ is the orientation line bundle over L2l+1

1−ε . Since the
canonical covering is connected, κ is nontrivial.

Construction of the stably framed immersion.

Let us construct the stably framed immersion

(ξ0 : N4l+2
0 ↬ R6l+3,Ψ0) (6)

such that the double point manifold L2l+1
0 (equipped with a skew-framing Ξ0 of

the normal bundle) coincides with an arbitrary given skew-framed immersion.
Let us start the construction by the description of standard immersion

g0 : S2l+1 ↬ R4l+2 with the self-intersection points at the origin of the co-
ordinate system R2l+1

1 ⊕R2l+1
2 = R4l+2. Let R2l+1

diag , R
2l+1
antidiag be two coordinate

subspaces de�ned by means of the sum and the di�erence of the base vectors in
the standard coordinate spaces R2l+1

1 ,R2l+1
2 .

Consider two standard unit disks D2l+1
1 ⊂ R2l+1

1 , D2l+1
2 ⊂ R2l+1

2 . Take a
manifold C di�eomorphic to the cylinder S2l × I de�ned as the collection of all
the segments such that each connects a pair of points in ∂D2l+1

1 and ∂D2l+1
2

with equal coordinates. The union of two disks D2l+1
1 ∪ D2l+1

2 with C (after
the identi�cation of corresponding components of the boundary) is the image
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of the standard sphere S2l+1 by a PL-immersion g0 into R4l+2, with one self-
intersection point at the origin. After the smoothing of corners along ∂C we
obtain the smooth immersion of sphere under construction.

Let us describe the manifold N4l+2
0 , the stable framing ΞN0 over this mani-

fold and the immersion f0 : N4l+2
0 ↬ R6l+3, [(f0,ΞN0)] ∈ Immstsf (4l+2, 2l+1).

Take the embedding η0 : L2l+1
0 ⊂ R6l+3 with the normal bundle νL0

= ν1⊕ν1⊗κ,
where ν1 is a trivial (2l + 1)�dimensional bundle (with the prescribed trivial-
ization) and κ is the orientation line bundle over L2l+1

0 . Consider the (2l + 2)�
dimensional bundle ν1 ⊗ κ⊕ ε over L2l+1

0 and de�ne the manifold N4l+2
0 as the

boundary S(ν1 ⊗ κ⊕ ε) of the disk bundle of this vector bundle.
The locally trivial �bration p : N4l+2

0 → L2l+1
0 is well-de�ned. Because

ν1⊗κ⊕ε is the normal bundle of L2l+1
0 , the manifoldN4l+2

0 admits an embedding
in codimension 1. This embedding determines the framing ΨN0

over N4l+2
0 such

that the constructed framed manifold (N4l+2
0 ,ΨN0

) is bounding.
Let us de�ne the immersion f0 : N4l+2

0 ↬ R6l+3. Take the normal bundle
ν1 ⊗ κ ⊕ ν1 of the immersion η0 and consider the collection of the standard
immersed spheres g0(S

2l+1) constructed above in each �ber of η0. The pair
(f0,Ψ0) is the stably framed immersion under construction.

Calculation of invariants of the constructed stably framed immersion.

This section is devoted to the calculation of the twisted Arf-Kervaire and the
twisted Browder-Eccles invariants for the stably framed immersion (6). The
group H = H2l+1(N

4l+2
0 ;Z/2) is generated by two elements. The �rst generator

x ∈ H is represented by a spherical �ber of the �bration p : N4l+2
0 → L2l+1

0 .
The �bration p has a standard section p−1 constructed by the trivial direct
summand in the bundle ν1 ⊗ κ⊕ ε. The image of the fundamental class of the
base L2l+1

0 induced by p−1, represents the second generator y ∈ H. Let us prove
under the assumption 2l + 1 ̸= 1, 3, 7 that the homomorphism π : H → Z/2 is
de�ned by π(x) = 1, π(y) = 0.

The condition π(x) = 1 holds since for an arbitrary immersion of a sphere
f0 : S2l+1 ↬ R4l+2 with one self-intersection point the corresponding normal
2l + 1�dimensional bundle is nontrivial.

Let us prove

π(y) = 0. (7)

The cycle y ∈ H is represented by the image of the fundamental class induced
by the map of section p−1(L2l+1

0 ) → N4l+2
0 of the �bration p. The collection of

the bases in the �bers of the subbundle ν1 ⊂ νL0 de�nes the trivialization of the
normal bundle of the immersion f0 over the submanifold p−1(L2l+1

0 ) ⊂ N4l+2
0 .

This proves (7).
The twisted Arf-Kervaire invariant of a stably framed immersion (ξ0,Ψ0) is

equal to q(y), i.e., coincides with the twisted Browder-Eccles invariant. This
gives the required computations.

Let us �nish the proof of Lemma 4.1. Consider a stably framed immersion
(f1−ε,ΨN1−ε) with the skew-framed double point manifold (L2l+1

1−ε ,ΞL1−ε). Be-
cause of condition (2) the stably framed immersion (η1−ε,ΨN1−ε

) is regularly
cobordant to the immersion (f,ΨN ) from the beginning of the proof of Lemma
4.1. Therefore [(f1−ε,Ψ1−ε)] ∈ Immstfr(4l+2, 2l+1)∗ ⊂ Immstfr(4l+2, 2l+1)
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and the stably framed immersion (f1−ε,ΨN1−ε
) in fact is framed and the stably

skew-framed immersion (L2l+1
1−ε ,ΞL1−ε

) in fact is skew-framed.
Let us apply the construction (6), where the standard stably framed immer-

sion (f0,ΨN0
) is obtained such that its self-intersection points are opposite to

the points of the skew-framed immersion (L2l+1
1−ε ,ΞL1−ε).

Note that the disjoint union (η1−ε,ΨN1−ε) ∪ (f0,ΨN0) is a stably framed
boundary. Obviously, for the stably framed immersion (ξ1−ε,Ψ1−ε) ∪ (ξ0,Ψ0)
both invariants are trivial. On other hand, by the calculations the twisted
Arf-Kervaire invariant and the twisted Browder-Eccles invariant of (f0,ΨN0

)
coincide. Hence for the stably framed immersion (η1−ε,ΞN1−ε

) both invariants

coincide and moreover, for the stably framed immersion (f,ΞN ) ∈ Immstfr(4l+
2, 2l + 1)∗ both invariants coincide. Lemma 4.1 is thus proved

Proof of Theorem 1.2. Let 4l + 2 = 30 or 4l + 2 = 62. Consider a closed
framed 2l�connected manifold (N4l+2,Ψ) with the Arf-Kervaire invariant 1.

Let us assume that for l = 7 (l = 15) there exists an embedding J : N4l+2 ⊂
R6l+3 and that the normal (2k + 2)�bundle νĪ of this embedding is equipped
with 9 (resp. 10) linearly independent sections.

The restriction of the normal bundle νJ on an arbitrary embedded sphere
iS2l+1 : S2l+1 → N4l+2 is the trivial (2l + 1)�dimensional, i.e., 15�dimensional
(resp. 31�dimensional) bundle (the bundle i∗S2l+1(νJ) is stably dimensional and
trivial), equipped with 9 (resp. 10) linearly independent sections.

There is only one stably trivial but nontrivial 15�dimensional (resp. 31�
dimensional) bundle over S15 (resp. S31); this bundle is the tangent bundle
T (S2l+1) (see [K-M] p. 534). The bundle i∗S2l+1(νJ) over S

15 (S31) is trivial
if and only if c(S15, i∗S15(νJ)) = 0 (resp. c(S31, i∗S31(νJ) = 0). By the Adams
theorem (see Novikov's survey [N, Ch. 3, Paragr. 8, p. 106 with the reference
on the Adams' result]) the tangent bundle T (S15) (resp. T (S31)) admits no
more than 8 (resp. 9) linearly independent sections. By our assumption the
bundle i∗S2l+1(νJ) admits 9 (resp. 10) linearly independent sections. Therefore
i∗S2l+1(νJ) is a trivial bundle. Hence the auxiliary homomorphism π : H → Z/2
is trivial and the Arf-Kervaire invariant of the stably framed manifold (N4l+2,Ξ)
is equal to the twisted Arf-Kervaire invariant of the pair (J,Ξ), so both are equal
to 1.

On the other hand, provided that J is an embedding, it follows by Lemma
4.1 that the twisted Arf-Kervaire invariant coincides with the twisted Browder-
Eccles invariant. Thus the assertion of Theorem 1.2 is proved.

Let us assume that for l = 7 (l = 15) there exists an embedding J̄ : N4l+2 ×
I ⊂ R6l+4 and that the normal (2k+2)�bundle νĪ of this embedding is equipped
with 9 (resp. 10) linearly independent sections over the complement to the base
segment pt× I ∈ N4l+2 × I.

The restriction of the normal bundle ν̄(J̄) over an arbitrary embedded sphere
iS2l+1 : S2l+1 ⊂ N4l+2 is the trivial (2l + 1)�bundle since it is equipped with 9
(resp. 10) linearly independent sections.

By the Rourke-Sanderson compression theorem [R-S] we may assume, af-
ter an appropriate isotopy of the framed embedding J̄ , that the collection of
segments I is vertically up with respect to the axis of projection. After the
projection we obtain an immersion J : N4l+2 ↬ R6l+3, which is framed at least
outside a neighborhood of a point. The double point manifold L2l+1 of the
immersion J is stably skew-framed, hence in fact it is framed. Let us denote
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this framing by Ξ.
The framed manifold (L2l+1,Ξ) determines an element of the group

Immstsf (2l + 1, 2l + 1) lying in the image of the homomorphism Π2l+1 =
Immfr(2l+1, 2l+1) → Immstsf (2l+1, 2l+1). Therefore the twisted Browder-
Eccles invariant of the stably framed immersion (J,ΨN ) is equal to the stable
Hopf invariant of the framed manifold (L2l+1,ΞL). By the Toda theorem for
2l + 1 = 15 and by the Adams theorem for 2l + 1 = 31, the Hopf invariant is
equal to 0 (see [Mo-T, Sect. 18]).

On the other hand, by Lemma 4.1, the twisted Browder-Eccles invariant
of (J,ΨN ) is equal to the twisted Arf-Kervaire invariant of (J,ΨN ). The last
is equal to the Arf-Kervaire invariant of the framed manifold (N,ΨN ) because
the auxiliary homomorphism π : H → Z/2 for the stably framed immersion
(J,ΨN ) is trivial. Therefore the twisted Arf-Kervaire invariant is equal to 1.
This contradiction shows that if the manifold N4l+2 × I embeds in R6l+4, then
the collection of linearly independent sections of the normal bundle does not
exist. Theorem 1.2 is thus proved.
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