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Abstract. In order to study homogeneous system of linear differential equa-

tions, I considered vector space over division D-algebra and the theory of

eigenvalues in non commutative division D-algebra. Since product in algebra
is non-commutative, I considered two forms of product of matrices (section

2) and two forms of eigenvalues (section 4). In sections 5, 6, 7, I considered

solving of homogenius system of differential equations.
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1. Convention

Convention 1.1. Let A be free algebra with finite or countable basis. Considering
expansion of element of algebra A relative basis e we use the same root letter to
denote this element and its coordinates. In expression a2, it is not clear whether this
is component of expansion of element a relative basis, or this is operation a2 = aa.
To make text clearer we use separate color for index of element of algebra. For
instance,

a = aiei

�

Convention 1.2. We will use Einstein summation convention in which repeated
index (one above and one below) implies summation with respect to repeated index.
In this case we assume that we know the set of summation index and do not use
summation symbol

civi =
∑
i∈I

civi

If needed to clearly show a set of indices, I will do it. �

2. Biring

Let A be associative division algebra over commutative ring D. We also will say
that A is associative D-algebra.

Left or right module V over division D-algebra A is called A-vector space.
According to the custom the product of matrices a and b is defined as product

of rows of the matrix a and columns of the matrix b.

Example 2.1. Let e be basis of right vector space V . We represent the basis e as
row of matrix

e =
(
e1 ... en

)
We represent coordinates of vector v as vector column

v =


v1

...

vn


Therefore, we can represent the vector v as product of matrices

v =
(
e1 ... en

)
v1

...

vn

 = eiv
i

�

Example 2.2. Let e be basis of left vector space V . We represent the basis e as
row of matrix

e =
(
e1 ... en

)



System of Differential Equations over Quaternion Algebra 3

We represent coordinates of vector v as vector column

v =


v1

...

vn


However, we cannot represent the vector

v = viei

as product of matrices

v =


v1

...

vn

 e =
(
e1 ... en

)

because this product is not defined. �

From examples 2.1, 2.2, it follows that we cannot confine ourselves to traditional
product of matrices and we need to define two products of matrices. To distinguish
between these products we introduced a new notation.

Definition 2.3. Let the nubmer of columns of the matrix a equal the number of
rows of the matrix b. ∗

∗-product of matrices a and b has form

(2.1)

 a∗
∗b=

(
aikb

k
j

)
(a∗
∗b)

i
j = aikb

k
j

a11 ... a1p

... ... ...

an1 ... anp

 ∗∗

b11 ... b1m

... ... ...

bp1 ... bpm

 =


a1k b

k
1 ... a1k b

k
m

... ... ...

ank b
k
1 ... ank b

k
m



=


(a∗
∗b)

1
1 ... (a∗

∗b)
1
m

... ... ...

(a∗
∗b)

n
1 ... (a∗

∗b)
n
m


(2.2)

∗
∗-product can be expressed as product of a row of the matrix a over a column of

the matrix b. �

Definition 2.4. Let the nubmer of rows of the matrix a equal the number of columns
of the matrix b. ∗∗-product of matrices a and b has form

(2.3)

 a∗∗b=
(
aki b

j
k

)
(a∗∗b)

i
j = aki b

j
k
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a11 ... a1m

... ... ...

ap1 ... apm

 ∗∗

b11 ... b1p

... ... ...

bn1 ... bnp

 =


ak1 b

1
k ... akmb

1
k

... ... ...

ak1 b
n
k ... akmb

n
k



=


(a∗
∗b)

1
1 ... (a∗

∗b)
1
m

... ... ...

(a∗
∗b)

n
1 ... (a∗

∗b)
n
m


(2.4)

∗
∗-product can be expressed as product of a column of the matrix a over a row of

the matrix b. �

Remark 2.5. We will use symbol ∗
∗- or ∗∗- in name of properties of each product

and in the notation. We can read the symbol ∗
∗ as rc-product (product of row over

column) and the symbol ∗∗ as cr-product (product of column over row). In order to
keep this notation consistent with the existing one we assume that we have in mind

∗
∗-product when no clear notation is present. �

Definition 2.6. Matrix δ = (δij ) is identity for both products. �

Definition 2.7. We introduce ∗
∗-power of matrix a using recursive definition

a0∗
∗

= δ(2.5)

an∗
∗

= an−1∗
∗

∗
∗a(2.6)

�

Theorem 2.8.

(2.7) a1∗
∗

= a

Definition 2.9. The matrix a−1∗
∗

is ∗
∗-inverse element of the matrix a if

(2.8) a∗
∗a−1∗

∗
= δ

Matrix a is called ∗
∗-regular, if there exists ∗

∗-inverse matrix. �

Definition 2.10. The matrix a−1∗
∗ is ∗∗-inverse element of the matrix a if

(2.9) a∗∗a
−1∗

∗ = δ

Matrix a is called ∗∗-regular, if there exists ∗∗-inverse matrix. �

3. Quasideterminant

According to [1], page 3 we do not have an appropriate definition of a determinant
for a division algebra. 1 However, we can define a quasideterminant which finally
gives a similar picture. In definition 3.1, I follow the definition [1]-1.2.2.

1Professor Kyrchei uses double determinant (see the definition in the section [4]-2.2) to solve
system of linear equations in quaternion algebra and to solve eigenvalues problem (see the section
[4]-2.5). I confine myself by consideration of quasideterminant, because I am interested in a wider
set of algebras.

[4] Ivan Kyrchei, Linear differential systems over the quaternion skew field, eprint

arXiv:1812.03397 (2018)

http://arxiv.org/PS_cache/math/pdf/0208/0208146.pdf#Page=3
http://arxiv.org/PS_cache/math/pdf/0208/0208146.pdf#Page=9
http://arxiv.org/abs/1812.03397
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[1] I. Gelfand, S. Gelfand, V. Retakh, R. Wilson, Quasideterminants, eprint
arXiv:math.QA/0208146 (2002)

Definition 3.1. (ji )-∗
∗-quasideterminant of n×n matrix a is formal expression

(3.1) det(∗
∗)

j
i a = ((a−1∗

∗
)
i

j )
−1

We consider (
j
i )-∗

∗-quasideterminant as an entry of the matrix

det(∗
∗) a =


det(∗

∗)
1
1 a ... det(∗

∗)
1
n a

... ... ...

det(∗
∗)

n
1 a ... det(∗

∗)
n
n a



=


((a−1∗

∗
)
1

1 )−1 ... ((a−1∗
∗
)
n

1 )−1

... ... ...

((a−1∗
∗
)
1

n)−1 ... ((a−1∗
∗
)
n

n)−1


(3.2)

which is called ∗
∗-quasideterminant. �

Theorem 3.2. Consider matrix a11 a12

a21 a22


Then

(3.3) det(∗
∗)a =

a11 − a12 (a22 )−1a21 a12 − a11 (a21 )−1a22

a21 − a22 (a12 )−1a11 a22 − a21 (a11 )−1a12



(3.4) det(∗∗)a =

a11 − a21 (a22 )−1a12 a12 − a22 (a21 )−1a11

a21 − a11 (a12 )−1a22 a22 − a12 (a11 )−1a21



(3.5) a−1∗
∗

=

(a11 − a21 (a22 )−1a12 )−1 (a21 − a11 (a12 )−1a22 )−1

(a12 − a22 (a21 )−1a11 )−1 (a22 − a12 (a11 )−1a21 )−1


4. Eigenvalue of Matrix

Let a be n × n matrix of A-numbers and E be n × n unit matrix.

Definition 4.1. A-number b is called ∗
∗-eigenvalue of the matrix a if the matrix

a− bE is ∗
∗-singular matrix. �

Definition 4.2. Let A-number b be ∗
∗-eigenvalue of the matrix a. A-column v

is called ∗
∗-eigencolumn of matrix a corresponding to ∗

∗-eigenvalue b, if the
following equality is true

(4.1) a∗
∗v = bv

�

http://arxiv.org/abs/math.QA/0208146
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Definition 4.3. Let A-number b be ∗
∗-eigenvalue of the matrix a. A-row v is called

∗
∗-eigenrow of matrix a corresponding to ∗

∗-eigenvalue b, if the following equality
is true

(4.2) v∗
∗a = vb

�

Definition 4.4. A-number b is called ∗∗-eigenvalue of the matrix a if the matrix
a− bE is ∗∗-singular matrix. �

Definition 4.5. Let A-number b be ∗∗-eigenvalue of the matrix a. A-column v
is called ∗∗-eigencolumn of matrix a corresponding to ∗∗-eigenvalue b, if the
following equality is true

(4.3) v∗∗a = vb

�

Definition 4.6. Let A-number b be ∗∗-eigenvalue of the matrix a. A-row v is called
∗
∗-eigenrow of matrix a corresponding to ∗∗-eigenvalue b, if the following equality

is true

(4.4) a∗∗v = bv

�

5. Differential Equation
dx

dt
= ax

Theorem 5.1. Let A be non-commutative D-algebra. For any b ∈ A, there exists
subalgebra Z(A, b) of D-algebra A such that

(5.1) c ∈ Z(A, b)⇒ cb = bc

D-algebra Z(A, b) is called center of A-number b.

Theorem 5.2. Since a ∈ Z(A, b), then b ∈ Z(A, a).

Definition 5.3. The map

(5.2) y = ex =

∞∑
n=0

1

n!
xn

is called exponent. �

Theorem 5.4. Let A be Banach D-algebra and a ∈ A. The map

f : t ∈ R→ eat ∈ A
has the following Taylor series decomposition

(5.3) eat =

∞∑
n=0

1

n!
antn

Proof. The theorem follows from the statement t ∈ Z(A, a). �
The theorem 5.5 is important for consideration of system of differential equations.
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Theorem 5.5. Let A be Banach associative D-algebra and a, c ∈ A. The condition

(5.4) c ∈ Z(A, a)

implies that

(5.5) eatc = ceat

Theorem 5.6. Let A be Banach D-algebra and a ∈ A. Then

(5.6) eata = aeat

Proof. The theorem follows from the theorem 5.5 if we set c = a. �

Theorem 5.7. Let
f : R→ A

be a map of real field R into Banach D-algebra A. The derivative of order n of the
map f is the map

t ∈ R→ dnf(t)

dtn
∈ A

Theorem 5.8. Let A be Banach D-algebra and a ∈ A. The derivative of order n
of the map

f : t ∈ R→ eat ∈ A
has the following form

(5.7)
dneat

dtn
= eatan = aneat

Theorem 5.9. Let A be Banach D-algebra and a ∈ A. For any A-number c, the
map

(5.8) x = eatc

is solution of the differential equation

(5.9)
dx

dt
= ax

The set of solutions of the differential equation (5.9) is right A-vector space

eatA ⊂ RAR

generated by the map x = eat.

Proof. The equality

dx

dt
=
deatc

dt
=
deat

dt
c = aeatc = ax

follows from the theorem 5.8.
To the right of the exponent, we wrote an arbitrary constant on which the

solution depends. To answer the question whether we can write a constant to the
left of the exponent, we consider the lemma 5.10.

Lemma 5.10. Let A be Banach D-algebra and a ∈ A. For any A-numbers c1, c2,
the map

(5.10) x = c1e
atc2

is solution of the differential equation (5.9) iff c1 ∈ Z(A, a).
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Proof. The equality

dx

dt
=
dc1e

atc2
dt

= c1
deat

dt
c2 = c1ae

atc2

follows from the theorem 5.8. If c1 6∈ Z(A, a), then the condition

(5.11) c1a = ac1

is not true and the map (5.10) is not a solution of the differential equation (5.9). �
According to the theorem 5.5, if c1 ∈ Z(A, a), then the map (5.10) gets form

(5.12) x = c1e
atc2 = eatc1c2

and is the map of the form (5.8).
Therefore, the set of solutions (5.8) is right A-vector space. �

Theorem 5.11. Let A be Banach D-algebra and a ∈ A. For any A-number c, the
map

(5.13) x = ceat

is solution of the differential equation

(5.14)
dx

dt
= xa

The set of solutions of the differential equation (5.14) is left A-vector space

Aeat ⊂ LAR

generated by the map x = eat.

6. Differential Equation
dx

dt
= a∗

∗x

Let A be Banach division D-algebra. The system of differential equations

dx1

dt
= a11x

1 + ...+ a1nx
n

......

dxn

dt
= an1x

1 + ...+ annx
n

(6.1)

where aij ∈ A and xi : R → A is A-valued function of real variable, is called
homogeneous system of linear differential equations.

Let

x =


x1

...

xn

 dx

dt
=


dx1

dt

...
dxn

dt



a =


a11 ... a1n

... ... ...

an1 ... ann


Then we can write system of differential equations (6.1) in matrix form

(6.2)
dx

dt
= a∗

∗x
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6.1. Solution as exponent x = ebtc . We will look for a solution of the system
of differential equations (6.2) in the form of an exponent

(6.3) x = ebtc =


ebtc1

...

ebtcn

 c =


c1

...

cn


Theorem 6.1. Let b be ∗

∗-eigenvalue of the matrix a. The condition

(6.4) b ∈
n⋂

i=1

n⋂
j=1

Z(A, aij )

implies that the matrix of maps (6.3) is solution of the system of differential equa-
tions (6.2) for ∗

∗-eigencolumn c.

Proof. According to the theorem 5.8, the equality

(6.5)
dx

dt
=
debt

dt
c = ebtbc = a∗

∗x = a∗
∗(ebtc)

follows from equalities (6.2), (6.3). According to the theorem 5.5, the equality

(6.6) ebtbc = ebt(a∗
∗c)

follows from the equality (6.5) and from the statement (6.4). Since the expression
ebt, in general, is different from 0, the equality

a∗
∗c = bc

follows from the equality (6.6). According to the definition 4.1, A-number b is ∗
∗-

eigenvalue of the matrix a and the matrix c is ∗
∗-eigencolumn of matrix a corre-

sponding to ∗
∗-eigenvalue b. �

Theorem 6.2. Let b be ∗
∗-eigenvalue of the matrix a and do not satisfy to the

condition (6.4). If entries of ∗
∗-eigencolumn c satisfy to the condition

(6.7) ci = ci1p p ∈ A p 6= 0

(6.8) ci1 ∈ Z(A, b) i = 1 , ...,n

then the matrix of maps (6.3) is solution of the system of differential equations
(6.2).

Proof. According to the theorem 5.8, the equality

(6.9)
dx

dt
=
debt

dt
c = bebtc1p = a∗

∗x = a∗
∗(ebtc1)p

follows from equalities (6.2), (6.3), (6.7). According to the theorem 5.5, the equality

(6.10) bc1e
bt = (a∗

∗c1)ebt

follows from the equality (6.9) and from statements (6.7), (6.8). Since the expression
ebt, in general, is different from 0, the equality

a∗
∗c1 = bc1

follows from the equality (6.10). According to the definition 4.1, A-number b is

∗
∗-eigenvalue of the matrix a and the matrix c1 is ∗

∗-eigencolumn of matrix a
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corresponding to ∗
∗-eigenvalue b. According to the theorem 13.9 the matrix c is ∗

∗-
eigencolumn of matrix a corresponding to ∗

∗-eigenvalue b. �
Let ∗

∗-eigenvalue b does not satisfy to the condition (6.4). Let entries of ∗
∗-

eigencolumn c do not satisfy to the condition (6.7), (6.8). Then the matrix of maps
(6.3) is not solution of the system of differential equations (6.2).

Theorem 6.3. Let ev(a∗
∗x) be the set of ∗

∗-eigenvalue of the matrix a for which
there is a solution of the system of differential equations (6.2). Let b ∈ ev(a∗

∗x).
The set V (a∗

∗x, b) of solutions (6.3) of the system of differential equations (6.2)
is right A-vector space of columns.

6.2. Solution as exponent x = cebt . In the paper [5], on page 35, authors
suggest to consider solution as exponent

(6.11) x = cebt

The equality

(6.12) a∗
∗(cebt) = cbebt

follows from equalities (6.2), (6.11). Since the expression ebt, in general, is different
from 0, the equality

(6.13) a∗
∗c = cb

follows from the equality (6.12).

[4] Ivan Kyrchei, Linear differential systems over the quaternion skew field, eprint
arXiv:1812.03397 (2018)

[5] Kit Ian Kou, Yong-Hui Xia. Linear Quaternion Differential Equations: Basic
Theory and Fundamental Results. eprint arXiv:1510.02224 (2017)

Based on the equality (6.13), authors of papers [4], [5] introduce the definition
of right eigenvalue defined by the equality (6.13) versus left eigenvalue which we
define by the equality

a∗
∗c = bc

According to the lemma 5.10, if the matrix of maps (6.11) is a solution of the
system of differential equations (6.2), then vector c satisfies to the condition

ci ∈ Z(A, b) i = 1 , ...,n

In such case, we can consider matrix of maps

x = ebtc

instead of the matrix of maps (6.11) and we do not need to consider the definition
of right eigenvalue.

6.3. Method of successive differentiation.

Theorem 6.4. Differentiating one after another system of differential equations
(6.2) we get the chain of systems of differential equations

(6.14)
dnx

dtn
= an∗

∗

∗
∗x

http://arxiv.org/abs/1812.03397
http://arxiv.org/abs/1510.02224
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Theorem 6.5. The solution of the system of differential equations (6.2) with initial
condition

t = 0 x =


x1

...

xn

 = c =


c1

...

cn


has the following form

(6.15) x = eta∗
∗

∗
∗c

7. Differential Equation
dx

dt
= x∗∗a

Let A be Banach division D-algebra. The system of differential equations

dx1

dt
= x1a11 + ...+ xna1n

......

dxn

dt
= x1an1 + ...+ xnann

(7.1)

where aij ∈ A and xi : R → A is A-valued function of real variable, is called
homogeneous system of linear differential equations.

Let

x =


x1

...

xn

 dx

dt
=


dx1

dt

...
dxn

dt



a =


a11 ... a1n

... ... ...

an1 ... ann


Then we can write system of differential equations (7.1) in matrix form

(7.2)
dx

dt
= x∗∗a

We will look for a solution of the system of differential equations (7.2) in the
form of an exponent

(7.3) x = cebt =


c1 ebt

...

cnebt

 c =


c1

...

cn


Theorem 7.1. Let b be ∗∗-eigenvalue of the matrix a. The condition

(7.4) b ∈
n⋂

i=1

n⋂
j=1

Z(A, aij )

implies that the matrix of maps (7.3) is solution of the system of differential equa-
tions (7.2) for ∗∗-eigencolumn c.
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Proof. According to the theorem 5.8, the equality

(7.5)
dx

dt
= x∗∗a

follows from equalities (7.2), (7.3). According to the theorem 5.5, the equality

(7.6) cbebt = (c∗∗a)ebt

follows from the equality (7.5) and from the statement (7.4). Since the expression
ebt, in general, is different from 0, the equality

c∗∗a = cb

follows from the equality (7.6). According to the definition 4.4, A-number b is ∗∗-
eigenvalue of the matrix a and the matrix c is ∗∗-eigencolumn of matrix a corre-
sponding to ∗∗-eigenvalue b. �

Theorem 7.2. Let b be ∗∗-eigenvalue of the matrix a and do not satisfy to the
condition (7.4). If entries of ∗∗-eigencolumn c satisfy to the condition

(7.7) ci = pci1 p ∈ A p 6= 0

(7.8) ci1 ∈ Z(A, b) i = 1 , ...,n

then the matrix of maps (7.3) is solution of the system of differential equations
(7.2).

Proof. According to the theorem 5.8, the equality

(7.9)
dx

dt
= x∗∗a

follows from equalities (7.2), (7.3), (7.7). According to the theorem 5.5, the equality

(7.10) ebtc1b = ebt(c1
∗
∗a)

follows from the equality (7.9) and from statements (7.7), (7.8). Since the expression
ebt, in general, is different from 0, the equality

c1
∗
∗a = c1b

follows from the equality (7.10). According to the definition 4.4, A-number b is
∗
∗-eigenvalue of the matrix a and the matrix c1 is ∗∗-eigencolumn of matrix a

corresponding to ∗∗-eigenvalue b. According to the theorem 13.10 the matrix c is
∗
∗-eigencolumn of matrix a corresponding to ∗∗-eigenvalue b. �

Let ∗∗-eigenvalue b does not satisfy to the condition (7.4). Let entries of ∗∗-
eigencolumn c do not satisfy to the condition (7.7), (7.8). Then the matrix of maps
(7.3) is not solution of the system of differential equations (7.2).

Theorem 7.3. Let ev(x∗∗a) be the set of ∗∗-eigenvalue of the matrix a for which
there is a solution of the system of differential equations (7.2). Let b ∈ ev(x∗∗a).
The set V (x∗∗a, b) of solutions (7.3) of the system of differential equations (7.2)
is left A-vector space of columns.
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8. Elliptical Trigonometry

Consider the system of differential equations

dx1

dt
= x2

dx2

dt
= −x1

(8.1)

The matrix a has form

a =

 0 1

−1 0


Since entries of matrix a are real numbers, then the equation to find eigenvalue is

(8.2)

∣∣∣∣∣∣−b 1

−1 −b

∣∣∣∣∣∣ = b2 + 1 = 0

It is evident that roots of the equation (8.2) depend on choice of D-algebra A.

Theorem 8.1. In quaternion algebra, the equation (8.2) has infinitely many roots

b = b1 i+ b2 j + b3k

such that
(b1 )2 + (b2 )2 + (b3 )2 = 1

According to the theorem 6.1, the solution of the system of differential equations
corresponding to eigennumber b, has form

(8.3) x = ebt

c1b
c2b


where H-column c1b

c2b


is eigenvector of the matrix a. Coefficients c1b , c2b which correspond to given
eigenvalue b, satisfy to the equation

−bc1b + c2b = 0

Therefore, corresponding solution of the system of differential equations (8.1) has
form

(8.4) x1 = ebt x2 = ebtb

If we want to find the solution of the system of differential equations (8.1) which
satisfies to initial condition

t = 0 x1 = 0 x2 = 1

then first impression is that we have too many choices.
Linear combination of two solutions of the system of differential equations (8.1)

is solution of the system of differential equations (8.1). We will start from consider-
ation of linear combination of two solutions of the form (8.4) because, in such case,
constants of linear combination are unique.
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Thus, we search solution of the form

x1 = eb1tC1 + eb2tC2

x2 = eb1tb1C1 + eb2tb2C2

(8.5)

According to initial condition, the system of equations

C1 + C2 = 0

b1C1 + b2C2 = 1
(8.6)

follows from the equality (8.5). The equality

C2 = −C1

(b1 − b2)C1 = 1
(8.7)

follows from the system of equations (8.6).

Example 8.2. Let b1 = i, b2 = j. The equality

(8.8) (i− j)C1 = 1

follows from the system of equations (8.7). The equality

(8.9) C1 =
1

2
(−i+ j)

follows from the equality (8.8). Our goal is to verify whether map

x1 = (eit − ejt)j − i
2

x2 = (ieit − jejt)j − i
2

(8.10)

is solution of system of differential equations (8.1). The equality

dx1

dt
= (ieit − jejt)j − i

2
= x2

dx2

dt
= (i2eit − j2ejt)

j − i
2

= −x1
(8.11)

follows from the equality (8.10). Therefore, the map (8.10) is solution of system of
differential equations (8.1) which satisfies to initial condition

t = 0 x1 = 0 x2 = 1

�

Theorem 8.3. We can represent general solution of the system of differential equa-
tions

dx1

dt
= x2

dx2

dt
= −x1

(8.12)
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as

x1 = sin t c11 + cos t c12

x2 = cos t c21 − sin t c22

c11 = c101 + c111 i+ c121 j + c131 k

c21 = c201 + c211 i+ c221 j + c231 k

c12 = c102 + c112 i+ c122 j + c132 k

c22 = c202 + c212 i+ c222 j + c232 k

(8.13)

Proof. Let

x1 = x10 + x11 i+ x12 j + x13k

x2 = x20 + x21 i+ x22 j + x23k
(8.14)

be representation of maps x1 , x2 relative to the basis e = (1, i, j, k). Then

dx1

dt
=
dx10

dt
+
dx11

dt
i+

dx12

dt
j +

dx13

dt
k

dx2

dt
=
dx20

dt
+
dx21

dt
i+

dx22

dt
j +

dx23

dt
k

(8.15)

and we can write system of differential equations (8.12) as 4 independent systems
of differential equations in real field

dx1i

dt
= x2i

dx2i

dt
= −x1i

i = 0 ,1 ,2 ,3

(8.16)

We can write solution of the systems of differential equations (8.16) as

x1i = sin t c1i1 + cos t c1i2

x2i = cos t c2i1 − sin t c2i2

i = 0 ,1 ,2 ,3

(8.17)

The equality (8.13) follows from the equality (8.17). �

9. Wronskian Matrix

We consider a matrix

X[x1, ..., xm](t) =


x11 ... x1m

... ... ...

xn1 ... xnm


whose columns

x1 =


x11

...

xn1

 ... xm =


x1m

...

xnm
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are solutions of the system of differential equations

dx1

dt
= a11x

1 + ...+ a1nx
n

......

dxn

dt
= an1x

1 + ...+ annx
n

(9.1)

to answer the question whether columns of the matrix are right linearly dependent.
Such matrix is called Wronskian matrix.

Now we are ready to return to analysis of the system of differential equations

dx1

dt
= x2

dx2

dt
= −x1

in quaternion algebra. Consider solutions

xi(t) = eit

1

i

 xj(t) = ejt

1

j

 xk(t) = ekt

1

k


x(t) =

 eit
j − i

2
− ejt j − i

2

eiti
j − i

2
− ejtj j − i

2


It is easy to see that columns of matrix

X[xi, xj , x](t) =

 eit ejt eit
j − i

2
− ejt j − i

2

eiti ejtj eiti
j − i

2
− ejtj j − i

2


are linearly dependent from right and coordinates of column x(t) with respect to
columns xi(t), xj(t) do not depend on t

x(t) = xi(t)
j − i

2
− xj(t)

j − i
2

Theorem 9.1. Column vectors xi(t), xj(t), xk(t) are right linearly dependent in
quaternion algebra.

Proof. Since column vectors xi(t), xj(t), xk(t) are symetric in Wronskian
matrix X[xi, xj , xk](t), then it does not matter to us which vectors we choose as
basis. For instance, we consider linear dependence of column xk(t) with respect to
columns xi(t), xj(t).

To find coefficients ci, cj of expansion of column xk(t) with respect to columns
xi(t), xj(t)

xk(t) = xi(t)ci + xj(t)cj

we need to solve the system of linear equations

(9.2) eitci + ejtcj = ekt

(9.3) eitici + ejtjcj = ektk
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According to the theorem 3.2, ∗
∗-quasideterminant of the matrix

a =

 eit ejt

eiti ejtj


of the system linear equations (9.2), (9.3) has the following form

det(∗
∗)a =

(1− k)eit (1 + k)ejt

(i− j)eit (j − i)ejt


and ∗

∗-inverse matrix has the following form

a−1∗
∗

=
1

2

e−it(1 + k) e−it(j − i)

e−jt(1− k) e−jt(i− j)


Therefore,

(9.4)

x1
x2

 =
1

2

e−it(1 + k) e−it(j − i)

e−jt(1− k) e−jt(i− j)

 ∗∗
 ekt

kekt


The equality

(9.5)

x1
x2

 =
1

2

e−it(1 + k + i+ j)ekt

e−jt(1− k − j − i)ekt


follows from the equality (9.4). The equalities

(9.6) x1 = 1 + i+ j + k

(9.7) x2 = 1− i− j − k
follows from the equality (9.5) and equalities

eit = cos t+ i sin t

ejt = cos t+ j sin t

ekt = cos t+ k sin t

The theorem follows from equalities (9.6), (9.7). �

Theorem 9.2.

(9.8) ekt = eit
1 + i+ j + k

2
+ ejt

1− i− j − k
2

Proof. The theorem follows from equalities (9.2), (9.6), (9.7). �
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10. Homogeneous Differential Equation with Constant Coefficients

10.1. Coefficients are Written from Left. The differential equation

(10.1)
dny

dtn
+ an

dn−1y

dtn−1
+ ...+ a1y = 0

is called homogeneous differential equation with constant coefficients. Using the set
of variables

(10.2) x1 = y x2 =
dy

dt
... xn =

dn−1y

dtn−1

we can write the differential equation (10.1) as the system of differential equations

dx1

dt
= x2

dx2

dt
= x3 ...

dxn−1

dt
= xn

dxn

dt
= −a1x1 − ...− anxn

(10.3)

We represent the set of variables (10.2) as AR-column

x =


x1

x2

...

xn


Then the system of differential equations (10.3) gets the form

dx1

dt

dx2

dt

...

dxn−1

dt

dxn

dt


=



0 1 0 ... 0

0 0 1 ... 0

... ... ... ... ...

0 0 0 ... 1

−a1 −a2 −a3 ... −an


∗
∗



x1

x2

...

xn−1

xn



Theorem 10.1. The solution of the differential equation (10.1) has form y = ebtc
where b is ∗

∗-eigenvalue of the matrix

0 1 0 ... 0

0 0 1 ... 0

... ... ... ... ...

0 0 0 ... 1

−a1 −a2 −a3 ... −an


and

b ∈
n⋂

i=1

Z(A, ai )
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or c ∈ Z(A, b).

Proof. The theorem follows from theorems 6.1, 6.2. �

Theorem 10.2. The solution of the differential equation (10.1) has form y = ebtc
where b is root of the polynomial

(10.4) bn + anb
n−1 + ...+ a1 = 0

Proof. According to the theorem 5.8, the equality

(10.5) bnebtc+ anb
n−1 ebtc+ ...+ a1 e

btc = 0

follows from the equality (10.1). Since, in general, ebtc 6= 0, then the equality
(10.4) follows from the equality (10.5). �

10.2. Coefficients are Written from Right. The differential equation

(10.6)
dny

dtn
+
dn−1y

dtn−1
an + ...+ ya1 = 0

is called homogeneous differential equation with constant coefficients. Using the set
of variables

(10.7) x1 = y x2 =
dy

dt
... xn =

dn−1y

dtn−1

we can write the differential equation (10.6) as the system of differential equations

dx1

dt
= x2

dx2

dt
= x3 ...

dxn−1

dt
= xn

dxn

dt
= −x1a1 − ...− xnan

(10.8)

We represent the set of variables (10.7) as A-column

x =


x1

x2

...

xn


Then the system of differential equations (10.8) gets the form

dx1

dt

dx2

dt

...

dxn−1

dt

dxn

dt


=



x1

x2

...

xn−1

xn


∗
∗



0 1 0 ... 0

0 0 1 ... 0

... ... ... ... ...

0 0 0 ... 1

−a1 −a2 −a3 ... −an
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Theorem 10.3. The solution of the differential equation (10.6) has form y = cebt

where b is ∗∗-eigenvalue of the matrix

0 1 0 ... 0

0 0 1 ... 0

... ... ... ... ...

0 0 0 ... 1

−a1 −a2 −a3 ... −an


and

b ∈
n⋂

i=1

Z(A, ai )

or c ∈ Z(A, b).

Theorem 10.4. The solution of the differential equation (10.6) has form y = cebt

where b is root of the polynomial

(10.9) bn + bn−1an + ...+ a1 = 0

Proof. According to the theorem 5.8, the equality

(10.10) cebtbn + cebtbn−1an + ...+ cebta1 = 0

follows from the equality (10.6). Since, in general, cebt 6= 0, then the equality
(10.9) follows from the equality (10.10). �

11. Eigenvalue of multiplicity 2

Consider system of differential equations

dx1

dt
= jx1

dx2

dt
= x1 + jx2

(11.1)

over quaternion algebra. ∗
∗-eigenvalues of the matrix

a =

j 0

1 j


satisfy to request that the matrix

a− bE =

j − b 0

1 j − b


is ∗

∗-singular matrix. To find appropriate values of b, it is enough to consider
quasideterminant

det(∗
∗)

1
2 (a− bE) = −(j − b)2

Therefore, b = j is eigenvalue of multiplicity 2.
Same as in commutative algebra, we consider fundamental solutions

x1 =

x11
x21

 = ejt

c11
c21

 x2 =

x12
x22

 = tejt

c12
c22
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where columns c1, c2 satisfy condition of theorems 6.1, 6.2.

Question 11.1. When a set of ∗
∗-eigenvalues is finite, it is easy to see multiple ∗

∗-
eigenvalues. How can we find multiple ∗

∗-eigenvalues when a set of ∗
∗-eigenvalues

is infinite? �

12. Covariance

Let V be right D-vector space. Let e be the basis with respect to which we wrote
down the system of differential equations

dx1

dt
= a11x

1 + ...+ a1nx
n

......

dxn

dt
= an1x

1 + ...+ annx
n

(12.1)

Then we can write the system of differential equations (12.1) in covariant form

(12.2) ei
dxi

dt
= eia

i
jx

j

Vectors
dx

dt
= ei

dxi

dt
x = eix

i

do not depend on the choice of basisi e. Let the basis e map into the basis e1

(12.3) e1i = ej b
j
i

The rule of transformation of coordinates of vector x

(12.4) e1ix
i
1 = ej b

j
ix

i
1 = ejx

j

follows from the equality (12.3). The equality

(12.5) bjix
i
1 = xj

follows from the equality (12.4). If we differentiate the equality (12.5), then we get

(12.6) bji
dxi1
dt

=
dbjix

i
1

dt
=
dxj

dt

From the equality (12.6), it follows the good news that the vector
dx

dt
does not

change when transforming the basis. Therefore, the system of differential equations
(9.1) gets form

(12.7)
dxi1
dt

= a1
i
jx

j
1

with respect to the basis e1.
The equality

(12.8) xi1 = b−1i
jx

j

follows from the equality (12.5). The equality

(12.9)
dxj

dt
= bji

dxi1
dt

= bji a1
i
lx

l
1 = bji a1

i
l b
−1l

kx
k = ajkx

k

follows from equalities (9.1), (12.6), (12.7), (12.8). The equality

(12.10) bji a1
i
l b
−1l

k = aik
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follows from the equality (12.9).
In commutative D-algebra, the transformation (12.10) preserves eigenvalues, be-

cause determinant of product of matrices equals to product of determinants. In non-
commutative D-algebra, ∗

∗-eigenvalues may change.

13. Helpful Theorems and Proofs

This paper is a fragment of the paper
[3] Aleks Kleyn, Differential Equation over Banach Algebra,
eprint arXiv:1801.01628 (2018)
Now I am preparing new version of the paper and I expect to submit it to arXiv in
August, September this year.

Theorem 13.1.

(13.1) (a∗
∗b)T = aT ∗∗b

T

Definition 13.2. Let V be left A-vector spaces .Let v = (vi ∈ V, i ∈ I ) be set of
vectors. The expression wivi is called linear combination of vectors vi . A
vector w = wivi is called linearly dependent on vectors vi . �

Theorem 13.3. Let A be associative division D-algebra. The set of vectors e = (ei , i ∈ I )
is a basis of left A-vector space V if vectors ei are linearly independent and any
vector v ∈ V linearly depends on vectors ei .

Theorem 13.4. Coordinates of vector v ∈ V relative to basis e of left A-vector
space V are uniquely defined.

Let aST be the minor matrix obtained from the matrix a by selecting rows with an
index from the set S and columns with an index from the set T . Let k = |S | = |T |.
Definition 13.5. If minor matrix aST is ∗

∗-nonsingular matrix then we say that

∗
∗-rank of matrix a is not less then k . ∗

∗-rank of matrix a, rank∗∗ a, is the
maximal value of k . We call an appropriate minor matrix the ∗

∗-major minor
matrix. �

Definition 13.6. If minor matrix aST is ∗∗-nonsingular matrix then we say that
∗
∗-rank of matrix a is not less then k . ∗∗-rank of matrix a, rank∗∗ a, is the

maximal value of k . We call an appropriate minor matrix the ∗∗-major minor
matrix. �

Theorem 13.7. Let matrix a have n columns. If

rank∗∗ a = k < n

then columns of the matrix are right linearly dependent

a∗
∗λ = 0

Theorem 13.8. Let matrix a have n columns. If

rank∗∗ a = k < n

then columns of the matrix are left linearly dependent

λ∗∗a = 0

Theorem 13.9. Let A-number b be ∗
∗-eigenvalue of the matrix a. The set of ∗

∗-
eigencolumns of matrix a corresponding to ∗

∗-eigenvalue b is right A-vector space
of columns.

http://arxiv.org/abs/1801.01628
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Theorem 13.10. Let A-number b be ∗∗-eigenvalue of the matrix a. The set of ∗∗-
eigencolumns of matrix a corresponding to ∗∗-eigenvalue b is left A-vector space of
columns.

Proof of the Theorem 5.5:
Proof. Let the statemant (5.4) be true. According to the theorem 5.4, to prove

the equality (5.5), it is enough to prove the equality

(13.2) anc = can

We will prove the equality (13.2) by induction over n.
For n = 0, the equality (13.2) is evident since a0 = 1. According to the theorem

5.1, for n = 1, the equality (13.2) follows from the equality

(13.3) ca = ac

Let the equality (13.2) be true for n = k

(13.4) akc = cak

The equality
ak+1c = aakc = acak = caak = cak+1

follows from equalities (13.3), (13.4). Therefore, the equality (13.2) is true for
n = k + 1. �

Proof of the Theorem 5.11:
Proof. The equality

dx

dt
=
dceat

dt
= c

deat

dt
= ceata = xa

follows from the theorem 5.8.
To the left of the exponent, we wrote an arbitrary constant on which the solution

depends. To answer the question whether we can write a constant to the right of
the exponent, we consider the lemma 13.11.

Lemma 13.11. Let A be Banach D-algebra and a ∈ A. For any A-numbers c1,
c2, the map

(13.5) x = c1e
atc2

is solution of the differential equation (5.14) iff c2 ∈ Z(A, a).

Proof. The equality

dx

dt
=
dc1e

atc2
dt

= c1
deat

dt
c2 = c1e

atac2

follows from the theorem 5.8. If c2 6∈ Z(A, a), then the condition

(13.6) c2a = ac2

is not true and the map (13.5) is not a solution of the differential equation (5.14).
�
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According to the theorem 5.5, if c2 ∈ Z(A, a), then the map (13.5) gets form

(13.7) x = c1e
atc2 = c1c2e

at

and is the map of the form (5.13).
Therefore, the set of solutions (5.13) is left A-vector space. �
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