Optimal Growth – Optimal Control – Ramsey Saving

Dynamics of Optimal Intertemporal Consumption and Saving :

The Solutions of Persistent Growth Models with Normative Capital Accumulation

UNIVERSITY OF HELSINKI

Optimal saving-consumption study by Ramsey (1928)

One of the most important decision (*control*) variables in models for individuals or nations is the choice about the normative (*optimal*) sizes of the saving rates, i.e. about the share of income to be devoted to investment (*capital accumulation*) and hence not available for *consumption*.

Newbery (2008) has stated: "Ramseys formulation of the problem served as a **model** for almost all subsequent studies of **optimal economic growth**, and, with the *critical addition* of a *growing population*, might have created *neoclassical growth theory* about 30 years before **Solows** (1956) contribution."

Keynes (1933) wrote: "It is, I think, one of the most remarkable contributions to *mathematical economics* ever made."

Optimal saving-consumption study by Cass (1965)

Cass (1965) mathematically demonstrated the *convergence* of an *initial capitallabor ratio* to unique positive *steady state ratio* ('optimal balanced growth path') - *replacing* the stability issues of *stationary state* of Ramsey (1928).

The Cass *optimal growth (control)* model is now one of the most important theoretical *paradigms* for *dynamic macroeconomic* models.

Qualitative and Quantitative Properties of Dynamic Models

We need to study *growth models* from a *quantitative standpoint*, before one can *claim* to have *explained* and *parametrically* accounted for *major differences* in economic *growth over time* and *across counties* or other empirical *policy analysis* and sound *advice*.

Besides *initial conditions*, *solutions (time paths)* of *optimal growth* models (*control* problems, *systems of differential equations*) depend critically on several important *parameters* involved in the basic *technology* (*production function*) and *preference (utility function) assumptions*.

Challenge - de La Grandville (2018) – MD Macro Dynamics

"Optimal growth theory, as it stands today, does not work.

Using *strictly concave utility functions* systematically *inflicts* on the economy *distortions* that are either historically *unobserved* or *unacceptable* by society."

Response to de La Grandville

Economists need a *clear* and *better understanding* of the *Euler* and

Pontryagin dynamic economic equations,

both from an *analytical economic* and *computational* point of view.

Introduction – Purpose

The purpose is to derive and solve, rigorously and quantitatively, the dynamics of the optimal growth (saving) model for general production and utility functions - f(k), u(c). Our main theoretical results are Theorem 1 and Lemma 1-3. Quantitative Applications

Time paths are actually demonstrated by *parametric* benchmark *quantitative solutions* of the *optimal control* dynamic systems.

Numerical demonstrations with CIES preferences and CES technologies.

 $\begin{array}{c} \textit{Ramsey} \text{ saving model is capable of generating } \textit{persistent endogenous growth.} \\ \scriptstyle 6 \end{array}$

Abstract

This paper explores the *optimal saving solutions* for optimal economic growth generated endogenously by a *Ramsey model*. *Sufficient conditions* are presented for *persistent* economic growth within a standard Ramsey model.

In *phase diagrams* of trajectories (solutions), the *optimal path* (*trajectory*) is a *separator*. *Below* the *separator*, *over-saving* diminishes consumption, *ultimately* leading to a sub-optimal situation where *all incomes* are *saved*. *Above* the *separator under-saving* suddenly *collapses* the economy as its productive *capital* vanishes *to zero*.

The paper gives comprehensive numerical applications for CIES preferences and CES technologies, together with parametric sensitivity analyses of the optimal solutions.

Literature References

- 1. Ramsey, Frank P. (1928), A Mathematical Theory of Saving. Economic Journal 38, 543-559.
- 2. Cass, David (1965), **Optimum Growth in an Aggregative Model of Capital Accumulation**. *Review of Economic Studies* 32, 233-240.
- 3. Hall, Robert E. (1988), Intertemporal Substitution in Consumption. Journal of Political Economy 96, 339-357.
- 4. King, Robert G. and Sergio T. Rebelo (1993), **Transitional Dynamics and Economic Growth in the Neoclassical Model**. *American Economic Review* 83, 908-931.
- 5. La Grandville, Olivier de (2017), Economic Growth A Unifed Approach, 2. Edition, CUP.
- 6. La Grandville, Olivier de (2018), Why is Optimal Growth Theory Mute ? Restoring its Rightful Voice. Macroeconomic Dynamics 22, 77-100.
- 7. Sorger, Gerhard (1989), On the Optimality and Stability of Competitive Paths in Continuous Time Growth Models. Journal of Economic Theory 48, 526-547.
- 8. Sorger, Gerhard (2002), On the Long-Run Distribution of Capital in the Ramsey Model. Journal of Economic Theory 105, 226-243.
- 9. Mitra, Tapan and Gerhard Sorger, (2013), **On Ramsey's Conjecture**. Journal of Economic Theory 148, 1953-1976.
- 10. Jensen, Bjarne S. (2017), von Thünen : Capital, Production Functions, Marginal Productivity Wages and the Natural Wage. German Economic Review 18, 51-80.
- 11. Jensen, Bjarne S. (1994), **The Dynamic Systems of Basic Economic Growth Models**, *Kluwer Academic Publishers*, Dordrecht.

Normative Capital Accumulation - Optimal Saving

• The representative consumer has a time additive intertemporal cardinal utility function, $u[c(t)]e^{-\rho t} \equiv I(t)$, (Integrand), in continuos time summed for, $\forall t \in \Re$:

$$\begin{split} U &= U[\widetilde{c(t)}] = \int_0^\infty u[c(t)] e^{-\rho t} dt, \quad \rho > 0 \ ; \quad U = U(\infty) \equiv \int_0^\infty I(t) dt \\ U^* &= U[c^*(t)] = \max \ U[\widetilde{c(t)}] = \max_{c(t)} \int_0^\infty u[c(t)] e^{-\rho t} dt, \quad \rho > 0 \\ V &= V[\widetilde{c(t)}] = \int_0^\infty u[c(t)] L(t) e^{-\rho t} dt = L_0 \int_0^\infty u[c(t)] e^{-(\rho - n)t} dt \ ; \rho - n > 0 \\ u'(c) &> 0 \ , \quad u''(c) < 0 \ , \quad \lim_{c \to 0} u'(c) = \infty \ , \quad \lim_{c \to \infty} u'(c) = 0. \end{split}$$

• Dynamics of the capital-labor ratio :

.

$$dk/dt = k = h(k,c), \quad k(t) = K(t)/L(t)$$
 SDU4

Normative Capital Accumulation – Optimal Saving

• Production function

$$Y = F(L,K) = Lf(k) \equiv Ly, L \neq 0; F(0,0) = 0$$

• The Production function f(k) is strictly *concave* and *monotonic* increasing

$$\forall k > 0 \colon f'(k) > 0, \quad f''(k) < 0 \colon k \in [0, \infty[\\ \lim_{k \to 0} f'(k) \equiv \bar{b} \leq \infty, \quad \lim_{k \to \infty} f'(k) \equiv \underline{b} \geq 0 \colon f'(k) \in [\underline{b}, \ \bar{b}]$$

• Factor accumulation is one-sector (good) macro models become

$$dK/dt = \dot{K} = S - \delta K = Y - C - \delta K = L[f(k) - \delta k - c]; \quad dL/dt = \dot{L} = nL$$

$$dk/dt = \dot{k} = f(k) - (n+\delta)k - c = h(k,c).$$

The Ramsey Problem – The Hamilton Function

The Ramsey optimization (control, maximum) problem is:

$$\max V = \max V[\widetilde{c(t)}] = \max_{c(t)} \int_0^\infty u[c(t)] e^{-(\rho-n)t} dt$$

s.t. $\dot{k} = f(k) - c - (n+\delta)k = h(k,c), \quad c \ge 0,$

is equivalent to maximizing the current value Hamiltonian function,

$$\mathcal{H}(c,k,\lambda) = u(c) + \lambda(t)h(k,c); \quad \mathcal{H}(c,k,\lambda) = u(c) + \lambda(t)\left[f(k) - (n+\delta)k - c\right]$$

with a Lagrange multiplier (costate, adjoint) variable, $\lambda(t)$, and the transversality conditions:

$$k(0) = k_0, \quad \lim_{t \to \infty} \lambda(t) k(t) e^{-(\rho - n)t} = 0$$

First order (necessary) conditions by the maximum principle are,

$$\frac{\partial \mathcal{H}}{\partial \lambda} = \frac{dk}{dt} ; \quad \frac{\partial \mathcal{H}}{\partial \lambda} = h(k,c) = f(k) - (n+\delta)k - c = \frac{dk}{dt} \equiv \dot{k}$$
$$\frac{\partial \mathcal{H}}{\partial c} = 0 ; \quad \frac{\partial \mathcal{H}}{\partial c} = \frac{\partial u}{\partial c} + \lambda(t)\frac{\partial h}{\partial c} = u'(c) - \lambda(t) = 0 ; \quad \lambda(t) = u'(c)$$
and with the **necessary** ("**Euler**") condition – a **costate** (**adjoint**) equation of motion for λ ,
$$\frac{\partial \mathcal{H}}{\partial k} = -\frac{d\lambda}{dt} + (\rho - n)\lambda(t) ; \quad \frac{\partial \mathcal{H}}{\partial k} = \lambda(t) \left[f'(k) - (n+\delta) \right] = -\dot{\lambda}(t) + (\rho - n)\lambda(t) \quad \text{SDU} \bigstar$$

Change of the State Variables from (λ, k) to (c, k)

• Elimination of λ

$$\dot{\lambda}(t) = u''(c)\dot{c}(t); \quad \hat{\lambda} = \frac{\dot{\lambda}}{\lambda} = \frac{du'(c)/dt}{u'(c)} = \widehat{u'(c)} = \frac{u''(c)c}{u'(c)}[\frac{\dot{c}}{c}] = E(u'(c),c)\hat{c}$$
$$\dot{\lambda}(t) = -\lambda(t)[f'(k) - \delta - \rho]; \quad \hat{\lambda} = -[f'(k) - \delta - \rho]$$

or alternatively the "Euler-Ramsey rule" as optimal changes in 'observable' per capita consumption, c

$$\widehat{c} = \dot{c}/c = -\frac{\dot{\lambda}/\lambda}{E(u'(c),c)} = -\frac{u'(c)}{u''(c)c} \left[f'(k) - (\delta + \rho) \right]$$

and the "Euler-Ramsey rule" as one ordinary autonomous differential equation in (k, c):

$$\dot{c} = c \eta(c) [f'(k) - (\delta + \rho)]; \quad \dot{c}/c = \eta(c) [f'(k) - (\delta + \rho)]$$

- IES, intertemporal elasticity of substitution : $\eta(c) = -u'(c)/[u''(c)c] > 0$ or reciprocal : $\theta(c) = 1/\eta(c) = -E(u'(c), c) = -d \ln u'(c)/d \ln c = -E(MU(c), c) > 0.$
- We have the 'Euler-Ramsey rule" of Consumption, Optimal Saving, Capital Accumulation :

Dynamic System of Optimal Consumption – Optimal Saving

•
$$\dot{k} = h(k,c) = f(k) - (n+\delta)k - c$$

•
$$\dot{c} = g(k,c) = c \eta(c) [f'(k) - (\delta + \rho)]$$

•
$$\lim_{t \to \infty} u' [c(t)] k(t) e^{-(\rho - n)t} = 0$$

• Saving rate,
$$s(t) = S(t)/Y(t)$$
:
 $s(t) = 1 - C(t)/Y(t) = 1 - c(t)/y(t) = 1 - c(t)/f(k(t))$

• Growth rate of per capita income,

$$\widehat{y}(t) \equiv \dot{y}/y = E\left(f(k), k\right) \left(\dot{k}/k\right) = \epsilon_{\kappa}(k) \left(\dot{k}/k\right) = \epsilon_{\kappa}(k[t]) \,\widehat{k}\left(t\right)$$

SDU

- 1885–1913 1921–1939 1973–1991
- $^{\rm 13} \qquad 0.1 \le s \le 0.2 \qquad 0.15 \le s \le 0.2 \qquad 0.15 \le s \le 0.3$

CES Production Function Y = F(L, K)

Parameters : $\gamma > 0$, 0 < a < 1, $\sigma > 0$

•
$$Y = F(L, K) = \gamma \left[(1-a)L^{\frac{\sigma-1}{\sigma}} + aK^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\sigma}{\sigma-1}}$$

•
$$AP_L(k) = Y/L = y = f(k) = \gamma \left[(1-a) + ak^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\sigma}{\sigma-1}}$$

•
$$MP_L(k) = (1-a) \gamma^{\frac{\sigma-1}{\sigma}} [AP_L(k)]^{\frac{1}{\sigma}}$$

•
$$MP_{\kappa}(k) = f'(k) = a\gamma \left[a + (1-a)k^{\frac{1-\sigma}{\sigma}}\right]^{\frac{1}{\sigma-1}}; \ \sigma > 1: \underline{b} = \gamma a^{\frac{\sigma}{\sigma-1}}$$

•
$$AP_{K}(k) = Y/K = f(k)/k;$$
 $MP_{K}(k) = a \gamma^{\frac{\sigma-1}{\sigma}} [AP_{K}(k)]^{\frac{1}{\sigma}}$

•
$$\epsilon_{\kappa}(k) = MP_{\kappa}/AP_{\kappa} = \left[1 + \left[(1-a)/a\right]k^{\frac{1-\sigma}{\sigma}}\right]^{-1}; \ \epsilon_{L} = 1 - \epsilon_{\kappa}$$

•
$$E(MP_L, AP_L) = 1/\sigma = E(MP_K, AP_K)$$

Steady State (Saddle Point) Solutions

In the **CES case**, the **dynamic system** becomes

$$\dot{k} = \gamma \left[(1-a) + ak^{\frac{\sigma-1}{\sigma}} \right]^{\frac{\sigma}{\sigma-1}} - (n+\delta)k - c$$

$$\dot{c} = c \eta(c) \left[\gamma a \left[a + (1-a)k^{\frac{-(\sigma-1)}{\sigma}} \right]^{\frac{1}{\sigma-1}} - \delta - \rho \right]$$

If they exist, **steady-state** values of **capital-labor ratios** and per **capita consumption** in optimal one-sector growth models are *singular/critical points*,

$$\begin{bmatrix} \dot{c} = 0 \Leftrightarrow k(t) = \kappa \end{bmatrix} \Leftrightarrow \begin{bmatrix} MP_{\kappa}(\kappa) = f'(\kappa) = \rho + \delta \end{bmatrix}$$
$$\begin{bmatrix} \dot{k} = 0 \Leftrightarrow c(t) = c(\kappa) \end{bmatrix} \Leftrightarrow \begin{bmatrix} c(\kappa) = f(\kappa) - (n + \delta)\kappa \end{bmatrix}$$

Table 1, the optimal saving rates, s(k), are always less than $\epsilon_{\kappa}(\kappa)$, ("golden rule" saving rate):

$$s(\kappa) = 1 - \frac{c(\kappa)}{f(\kappa)} = \frac{(n+\delta)\kappa}{f(\kappa)} = \frac{n+\delta}{AP_{\kappa}(\kappa)} < \epsilon_{\kappa}(\kappa) = \frac{\rho+\delta}{AP_{\kappa}(\kappa)}; \ \rho > n$$

Parameter Values

- Real Interest Rate MP_K 0.07 0.11 OECD Economies
- Real Interest Rate MP_K 0.12 0.17 Poor Countries
- Depreciation Rate δ 0.03 0.06
- Capital intensity a 0.2 0.6 Labor intensity (1-a)
- Substitution elasticity σ 0.5 2.5
- Total Factor Productivity γ 0.3 3.0
- Discount rate (Time Preference) ho 0.05 0.10 0.12 0.17

Parameter values - steady state models					odels	Model characteristics										
case	ρ	\mathbf{n}	δ	γ	a	σ	κ	$c(\kappa)$	$\mathrm{f}(\kappa)$	$\mathrm{MP}_{\scriptscriptstyle L}(\kappa)$	$\mathbf{f}(\kappa)/\kappa$	$\mathrm{MP}_\kappa(\kappa)$	$\epsilon_{\kappa}(\kappa)$	K/Y	$s(\kappa)$	$\rho+\delta$
1	0.050	0.02	0.05	1.0	0.20	1.0	2.378	1.023	1.189	0.951	0.500	0.100	0.200	2.000	0.140	0.100
2	0.050	0.02	0.05	1.0	0.25	1.0	3.393	1.119	1.357	1.018	0.400	0.100	0.250	2.500	0.175	0.100
3	0.050	0.02	0.05	1.0	0.40	1.0	10.079	1.814	2.520	1.512	0.250	0.100	0.400	4.000	0.280	0.100
4	0.050	0.02	0.05	3.0	0.40	1.0	62.898	11.321	15.724	9.435	0.250	0.100	0.400	4.000	0.280	0.100
5	0.070	0.02	0.05	1.0	0.40	1.0	7.438	1.710	2.231	1.339	0.300	0.120	0.400	3.333	0.233	0.120
6	0.075	0.02	0.08	1.0	0.40	1.0	4.855	1.396	1.881	1.129	0.388	0.155	0.400	2.581	0.258	0.155
7	0.100	0.02	0.08	1.0	0.40	1.0	3.784	1.325	1.703	1.022	0.450	0.180	0.400	2.222	0.222	0.180
8	0.120	0.02	0.08	1.0	0.40	1.0	3.175	1.270	1.587	0.952	0.500	0.200	0.400	2.000	0.200	0.200
9	0.100	0.02	0.08	2.0	0.40	1.0	12.014	4.205	5.406	3.244	0.450	0.180	0.400	2.222	0.222	0.180
10	0.050	0.02	0.08	0.3	0.40	1.0	0.875	0.197	0.284	0.171	0.325	0.130	0.400	3.077	0.308	0.130
11	0.050	0.02	0.08	1.0	0.60	1.0	45.764	5.339	9.915	3.966	0.217	0.130	0.600	4.615	0.461	0.130
12	0.050	0.02	0.08	1.0	0.40	1.0	6.509	1.464	2.115	1.269	0.325	0.130	0.400	3.077	0.308	0.130
13	0.150	0.02	0.05	1.0	0.60	1.0	15.588	4.105	5.196	2.078	0.333	0.200	0.600	3.000	0.210	0.200
1	0.050	0.02	0.05	1.0	0.25	0.5	1.775	0.999	1.123	0.945	0.632	0.100	0.158	1.581	0.111	0.100
2	0.050	0.02	0.05	1.0	0.40	0.5	2.667	1.146	1.333	1.067	0.500	0.100	0.200	2.000	0.140	0.100
3	0.050	0.02	0.05	1.0	0.60	0.5	4.624	1.564	1.888	1.425	0.408	0.100	0.245	2.449	0.172	0.100
4	0.050	0.02	0.05	3.0	0.60	0.5	9.107	5.802	6.439	5.529	0.707	0.100	0.141	1.414	0.099	0.100
5	0.075	0.02	0.05	1.0	0.40	1.5	53.718	5.624	9.384	2.669	0.175	0.125	0.716	5.724	0.400	0.125
6	0.075	0.02	0.05	1.0	0.60	1.2	820.885	67.504	124.966	22.356	0.152	0.125	0.821	6.569	0.461	0.125
7	0.100	0.02	0.08	0.3	0.40	1.5	0.385	0.174	0.212	0.143	0.551	0.180	0.327	1.814	0.181	0.180
8	0.100	0.02	0.08	0.2	0.40	1.5	0.162	0.094	0.110	0.080	0.675	0.180	0.267	1.481	0.148	0.180
9	0.060	0.02	0.05	1.0	0.40	1.7	108201.257	4478.988	12053.076	150.937	0.111	0.110	0.987	8.977	0.631	0.110
	Parameters - persistent growth models				models											
1	0.100	0.02	0.05	1.0	0.60	1.5	∞	∞	∞	∞	0.216	0.216	1.000	4.630	0.630	0.150
2	0.100	0.02	0.05	1.0	0.40	2.0	∞	∞	∞	∞	0.160	0.160	1.000	6.250	0.500	0.150
3	0.060	0.02	0.08	1.0	0.40	3.0	∞	∞	∞	∞	0.253	0.253	1.000	3.952	0.842	0.140
4	0.070	0.02	0.08	1.0	0.40	7.0	∞	∞	∞	∞	0.343	0.343	1.000	2.915	0.854	0.150
		~ ~ ~			~	~ ~							1 0 0 0			

 Table 1. Parameters for optimal growth models : CES cases with steady states or asymptotics.

17

Persistent Growth - Asymptotic Growth : Solutions - c(t), k(t) - and the Phase Portrait

- Assumption 1. Technology: The per capita function f(k), has continuity and differentiability properties, (i) $f(k) \in C^0([0, \infty[) \cap C^1(]0, \infty[), (ii) f(0) \ge 0.$
- Further, it is assumed for *persistent growth* that for a *concave* function with $f(k) \to \infty$ as $k \to \infty$:

 $(iii) \quad \forall k > 0: \quad f'(k) > \delta + \rho \quad \Rightarrow \quad \forall t > 0: \dot{c}(t) > 0, \quad (iv) \quad \lim_{k \to \infty} f'(k) \equiv \underline{b} > \delta + \rho.$

No stationary solutions exist in the closed first quadrant $\overline{\Re}^2_+$, [except for (0, 0)]

Persistent Growth : Solutions – Phase Portrait

Theorem 1. Optimal (Ramsey) Saving - Persistent Endogenous per Capita Growth persistent growth $(\dot{c} > 0)$: $\lim_{k \to \infty} f'(k) \equiv \underline{b} > \rho + \delta \iff \rho < \underline{b} - \delta$ $\exists \varphi^*(t): \sup_{c>0} \eta(c) \equiv \overline{\eta} < \frac{\underline{b} - (n+\delta)}{\underline{b} - (\rho+\delta)} \iff \rho > \frac{(\underline{b} - \delta)(\overline{\eta} - 1) + n}{\overline{n}}$ $\exists V : \sup_{c>0} \eta(c) \equiv \overline{\eta} < \frac{\rho - n}{(b - \delta) - \rho} \iff \rho > \frac{(\underline{b} - \delta)\overline{\eta} + n}{1 + \overline{n}}$ Separator – Optimal Trajectory $\varphi^*(t) \equiv [k^*(t), c^*(t)], t \in \Re$, Figure 1 cΠ 2 $c = \alpha k$ W_{α} k2 k k_0

Figure 2.a: The positive invariant región \mathbf{W}_{α} , with endogenous (persistent) per capita growth

Figure 2.b: curve $C = C_I \cup C_{II} \cup \{(1,0), (0,1)\}$ (closed set), C_{II} must be an open and connected set of C. $C_I \cup \{(1,0)\}$ must be a closed set with the end point $[\bar{k^*}, \bar{c^*}]$ of curve C_I , where $\varphi^*(t)$ passes.

Coordinate Transformations and Transformed Solutions

$$z = Y/K = y/k = f(k)/k = \zeta(k); \quad k = \zeta^{-1}(z)$$

$$x = C/K = c/k; \quad c = kx = \zeta^{-1}(z)x$$

$$\dot{z} = \phi(z, x) = z [f'(\zeta^{-1}(z))/z - 1](z - x - n - \delta)$$

$$\dot{x} = \psi(z, x) = x [\eta(\zeta^{-1}(z)x) [f'(\zeta^{-1}(z)) - \delta - \rho] - z + x + n + \delta]$$

• Saddle point and optimal trajectory in transformed coordinates – Reversing *time* variable

 $\dot{z} = 0 : z = \underline{b} ; x = z - n - \delta$ $\dot{x} = 0 : x + \eta \left(\zeta^{-1}(z)x\right) \left[f'(\zeta^{-1}(z)) - \delta - \rho\right] - z + n + \delta = 0$

• Asymptotic growth rates :

$$\lim_{t \to \infty} \widehat{k}(t) = \lim_{t \to \infty} \widehat{c}(t) = \lim_{t \to \infty} \widehat{y}(t) = \underline{\widehat{y}} = \overline{\eta} \left(\underline{b} - \delta - \rho \right)$$

Applications – Solutions with CIES and CES

CIES:
$$u(c) = \frac{c^{1-\theta} - 1}{1-\theta}, \ \theta = 1: u(c) = \ln c; \ -E(MU(c), c) = \frac{1}{\eta(c)} = \theta \ge 0$$

Theorem 1 is satisfied with : $\underline{b} - \delta > \rho > (\underline{b} - \delta + n\theta)/(1+\theta)$

CIES and **CES** solutions with their seven parameters :

 $\gamma = 0.661157, \ a = 0.55, \ \sigma = 2.0, \ \delta = 0.03, \ n = 0.01, \ \theta = 1 = \eta \ , \ \rho = 0.16$ Theorem 1 : 0.17 > ρ > 0.09

CES case, the **dynamic system** becomes

$$\begin{split} \dot{k} &= \gamma \left[(1-a) + ak^{\frac{(\sigma-1)}{\sigma}} \right]^{\frac{\sigma}{(\sigma-1)}} - c - (n+\delta)k \\ \dot{c} &= (c/\theta) \left[\gamma a \left[a + (1-a)k^{\frac{-(\sigma-1)}{\sigma}} \right]^{\frac{1}{(\sigma-1)}} - \delta - \rho \right] \\ \text{Isocline}: \quad \dot{k} &= 0 \quad \Leftrightarrow \quad c = \gamma \left[(1-a) + ak^{\frac{(\sigma-1)}{\sigma}} \right]^{\frac{\sigma}{(\sigma-1)}} - (n+\delta)k \end{split}$$

SDU 🎓

Applications – Solutions with CIES and CES

• The transformed dynamic system is

$$\dot{z} = \phi(z, x) = z \left[a \gamma^{\frac{\sigma-1}{\sigma}} z^{\frac{1-\sigma}{\sigma}} - 1 \right] \left[z - x - n - \delta \right]$$

$$\dot{x} = \psi(z, x) = x \left[x - z \left(1 - \frac{1}{\theta} \gamma^{\frac{\sigma-1}{\sigma}} a z^{\frac{1-\sigma}{\sigma}} \right) + n + \delta - \frac{\delta + \rho}{\theta} \right]$$

• The singularities (*saddle point* and *node* point) become,

$$z^* = \gamma a^{\frac{\sigma}{\sigma-1}} = \underline{b}$$

$$x^* = z^* (1 - 1/\theta) + (\delta + \rho)/\theta - n - \delta; \quad node : x^* = 0$$

• Hence the long-run (asymptotic) *saving rate* (s*) is given by,

$$s^* = 1 - \frac{x^*}{z^*} = 1 - \frac{\rho - (\underline{b} - \delta)(1 - \theta) - n\theta}{\underline{b}\theta}$$

• **CES**-baseline **parameters** give exactly the **numbers** : $\underline{b} = z^* = 0.20, x^* = 0.15, s^* = 0.25$

Transformed Solutions, Phase Portrait : CIES and CES

Figure 4: The transformed phase portrait in the (z, x) space. CES-baseline case.

SDU 🎓

Solutions and Phase Portrait with CIES and CES

Figure 3 : The phase portrait in the state (k, c) space, *CES*-baseline case.

Solutions and Phase Portrait with CIES and CES

Figure 5 : The time paths for: k(t), c(t), y(t), and s(t). CES-baseline case.

SDL

Solutions and Phase Portrait with CIES and CES

Parameter Sensitivity of Optimal Time Paths

Parameter sets	CES-baseline	high θ	low θ	high σ ,	low σ
θ	1.000	3.000	0.750	1.000	1.000
ρ	0.160	0.140	0.163	0.160	0.160
σ	2.000	2.000	2.000	2.500	1.500
γ	0.661	0.661	0.661	0.540	1.200

Table 2. The Parameter Sets used in Sensitivity Analyses.

$$\begin{split} \eta \text{ Intertemporal elasticity of substitution} : \eta &= 1/\theta \\ \theta : 0.5 - 5.0 \\ \eta &: 2.0 - 0.5 \\ \theta &= 1 = \eta : u(c) = \ln c \\ \mathbf{Asymptotic equivalence} \ (\mathbf{t} = \mathbf{\infty}), \ \underline{b} = 0.2, \ \underline{\widehat{y}} = 0.01, \ s^* = 0.25: \\ \underline{b} = \gamma \, a^{\frac{\sigma}{\sigma-1}} ; \ \underline{\widehat{y}} = \frac{\underline{b} - \delta - \rho}{\theta} ; \ s^* = \frac{(\underline{b} - \delta - \rho)/\theta + n + \delta}{\underline{b}} \equiv \frac{\underline{\widehat{y}} + n + \delta}{\underline{b}} \end{split}$$

Figure 7 : Low θ /high ρ , Table 2. Time paths for s(t) and $\hat{y}(t)$ in primitive (k(0) = 100) and mature (k(0) = 1000) economies.

DU∻

Parameter Sensitivity of Optimal Time Paths

Figure 8 : High γ /low σ , Table 2. Time paths for s(t) and $\hat{y}(t)$ in primitive (k(0) = 100) and mature (k(0) = 1000) economies.

Phase Portraits with the Extended CD Function

$$Y = F(L,K) = AK + BK^{\alpha} L^{1-\alpha}; \ A, B, > 0, \ 0 < \alpha < 1$$

$$\sigma(k) \equiv -\frac{\left[f(k) - f'(k)k\right]f'(k)}{f''(k)kf(k)} = \frac{\alpha B + Ak^{1-\alpha}}{\alpha B + \alpha Ak^{1-\alpha}}$$
$$\lim_{k \to 0} \sigma(k) = 1 ; \qquad \lim_{k \to \infty} \sigma(k) = 1/\alpha$$

• The Ramsay dynamic system becomes with extended CD and CIES

$$\dot{k} = Ak + Bk^{\alpha} - c - (n+\delta)k$$
$$\dot{c} = (c/\theta)[A + \alpha Bk^{\alpha-1} - \delta - \rho]$$

• The transformed dynamic system becomes

$$\dot{z} = z (1-\alpha)(A/z - 1)(z - x - n - \delta),$$

$$\dot{x} = x [x - D - \frac{\theta - \alpha}{\theta} \cdot (z - A)]$$

Solutions and Phase Portrait with CIES and extended CD

time

time

50

50

30

Figure 9 : The phase portrait (orbits) in the state (k, c) space. Extended CD.

> Figure 10 : The time paths for: k(t), c(t), y(t), and s(t). Extended CD.

SDU

The Ramsey Model with CES function : $\sigma = \infty$

$$Y = F(L, K) = \gamma [(1 - a)L + aK] ; y = f(k)$$

• The Ramsay dynamic system : *Optimal control* system is *Affine dynamics*

$$\dot{k} = \gamma [1 - a + ak] - (n + \delta)k - c = \gamma (1 - a) + (\gamma a - \delta - n)k - c$$

$$\dot{c} = (1/\theta) [\gamma a - \delta - \rho]c > 0; \quad \dot{k} = 0: \quad c = \gamma (1 - a) + (\gamma a - \delta - n)k$$

• The transformed non-linear dynamic system of the *Affine dynamics* becomes :

$$\dot{z} = [a\gamma - z][z - x - n - \delta]$$

$$\dot{x} = x[x - z + \frac{\gamma a - \delta - \rho}{\theta} + n + \delta]; \quad node : (z^*, x^* = 0)$$

• Saddle point of transformed system with asymptotic saving/growth rates, are :

$$z^{*} = \underline{b} = \gamma a \; ; \; x^{*} = z^{*} \left[\frac{\theta - 1}{\theta}\right] + \frac{\delta + \rho}{\theta} - n - \delta = \left[\gamma a - \delta\right] \left[\frac{\theta - 1}{\theta}\right] + \frac{\rho}{\theta} - n$$

$$s^{*} = 1 - \frac{x^{*}}{z^{*}} = \frac{(\gamma a - \delta - \rho)/\theta + n + \delta}{\gamma a} = \frac{\widehat{y} + n + \delta}{\gamma a}$$

The Ramsey Model with CES function $: f(k) = \gamma ak$

$$y = f(k) = \gamma ak$$
 - AK-model, $B = 0$

• The Ramsay dynamic system : *Optimal control* system is *Linear dynamics*

$$\dot{k} = (\gamma a - \delta - n)k - c \equiv a_{11}k + a_{12}c; a_{11} = 0.16, a_{12} = -1$$

$$\dot{c} = (1/\theta) [\gamma a - \delta - \rho] c \equiv a_{22} c ; \qquad a_{21} = 0, \quad a_{22} = 0.01$$

using CES-baseline parameters : $\underline{b} = \gamma a = 0.20, \, \delta = 0.03, \, \rho = 0.16, \, n = 0.01, \, \theta = 1$

• The triangular coefficient matrix implies that,

$$\forall t : \dot{c}(t)/c(t) = c(t) = (1/\theta) [\underline{b} = -\delta - \rho] = \underline{\widehat{y}} = a_{22} ; a_{22} = 0.01$$

• The isocline, $\dot{k} = 0$, as a straight line :

$$\dot{k} = 0$$
 : $c = (\gamma a - \delta - n)k = a_{11}k$; $a_{11} = 0.16$

The Ramsey Model with Closed Form Solutions

• Ray ("eigen-vector") with slope - α_1 - is the trajectory for the separator

$$\forall t : c^*(t)/k^*(t) = \alpha_1 = a_{11} - a_{22} = c_0^*/k_0 = 0.15/1.0 = 15/100 = 0.15 = x^*$$

• The *unique separator, optimal time paths,* $\varphi^*(t)$, along the *trajectory* are expressed by :

 $\forall t \ \varphi^*(t) \equiv [k^*(t), c^*(t)] = e^{a_{22}t} [k_0, c_0^*] = k_0 e^{a_{22}t} [1, \alpha_1], k_0 = 1; k_0 = 100$

• The constant (time invariant) **optimal** saving rates $s^*(t)$ along the separator is :

$$\forall t \ s^*(t) = 1 - c^*(t)/y^*(t) = 1 - \alpha_1 k^*(t)/\gamma a k^*(t) = 1 - \frac{\alpha_1}{\gamma a} = 1 - \frac{x^*}{z^*} = 0.25$$

• All time paths $\varphi(t)$ - General Solution $[k(t), c(t)]$ - have the closed form :
 $\varphi(t) : k(t) = k_0 e^{a_{11}t} + \frac{c_0}{a_{11} - a_{22}} (e^{a_{22}t} - e^{a_{11}t}) ; c(t) = c_0 e^{a_{22}t} ; k_0 = 100$

• Time paths for k(t)/c(t) and some *non-optimal saving paths* s(t), are given by :

$$k(t)/c(t) = \frac{1}{a_{11} - a_{22}} + \left(\frac{k_0}{c_0} - \frac{1}{a_{11} - a_{22}}\right) e^{(a_{11} - a_{22})t} ; \quad k_0 = 100$$

$$s(t) = 1 - c(t)/y(t) = 1 - c(t)/\gamma a k(t) = 1 - \frac{1}{\gamma a} \frac{c(t)}{k(t)} ; \quad k_0 = 100$$

33

• In *eigen-vector space*, the *phase portraits* of the *General Solution* is called an *unstable node*, Pontrygain (1962, p.117), Birkoff & Rota (1989, p.148) and Arnold (1973, p.118)

SDU

Solutions and Phase Portrait - CIES and Linear Dynamics

Figure 11a. The Phase Portrait $-\varphi(t)$ – in the state (k, c) space; k(0) = 1 with *initial* (control) values : $c_0^* = 0.15$, separator; *Fig. b-d* : $k(0) = 100 : c_0^* = 15$,

 $c_0 = 15 \cdot 0.999 = 14.985, \ \varphi_1(t); \ c_0 = 15 \cdot 0.9 = 13.5, \ \varphi_3(t);$

34

 $c_0 = 15 \cdot 1.001 = 15.015, \ \varphi_2(t);$ $c_0 = 15 \cdot 1.01 = 15.15, \ \varphi_4(t)$ Figure 11b. Ramsey Model Time paths for $k(t) : \varphi(t)$ – short run. Figure 11c. Ramsey Model Time paths for $c(t) : \varphi(t)$ – long run. Figure 11d. Ramsey Model Time paths for $s(t) : \varphi(t)$ – short run and long run.

SDU 🎓

Conclusion

We have *derived* and *computed* the *optimal saving solutions* for optimal economic growth generated endogenously by a *Ramsey model*. *Sufficient conditions* are presented for *persistent* economic growth within a "standard parametrically unified Ramsey model".

In *phase diagrams* of trajectories (solutions), the *optimal path* (*trajectory*) is a *separator*. *Below* the separator, *over-saving* diminishes consumption, *ultimately* leading to a sub-optimal situation where *all incomes* are *saved*. *Above* the separator *under-saving* suddenly *collapses* the economy as its productive *capital* vanishes *to zero*.

Comprehensive numerical applications for CIES preferences and CES technologies, together with parametric sensitivity analyses of the optimal solutions were demonstrated.

Final <u>Comments</u> and Suggestions

• Asymptotic "real interest rates" (\underline{b}) – Asymptotic growth rate ($\underline{\widehat{y}}$) – Saving rates (s^*), are :

$$\underline{b} = \gamma \, a^{\frac{\sigma}{\sigma-1}} \; ; \; \; \underline{\widehat{y}} \; = \; \frac{\underline{b} - \delta - \rho}{\theta} \; ; \; s^* \; = \; \frac{(\underline{b} - \delta - \rho)/\theta \, + \, n \, + \, \delta}{\underline{b}} \; \equiv \; \frac{\underline{\widehat{y}} + \, n \, + \, \delta}{\underline{b}}$$

• Benchmark solutions were : $\underline{b} = 0.2, \ \underline{\hat{y}} = 0.01, \ s^* = 0.25$

• Existent conditions for the optimal solutions – separator – were :

$$\underline{b} - \delta > \rho > (\underline{b} - \delta + n\theta)/(1+\theta) > n$$

• We used the additive intertemporal cardinal utility function : $u[c(t)]e^{-\rho t} \equiv I(t)$, (Integrand)

Thank you for your Attention