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Optimal saving-consumption study by Ramsey (1928)

One of the most important decision (control) variables in models for
individuals or nations is the choice about the normative (optimal) sizes of the
saving rates, i.e. about the share of income to be devoted to investment
(capital accumulation) and hence not available for consumption.

Newbery (2008) has stated: “Ramseys formulation of the problem served as a
model for almost all subsequent studies of optimal economic growth, and, with
the critical addition of a growing population, might have created
neoclassical growth theory about 30 years before Solows (1956) contribution.”

Keynes (1933) wrote: “It is, I think, one of the most remarkable contributions to
mathematical economics ever made.”
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Optimal saving-consumption study by Cass (1965)

Cass (1965) mathematically demonstrated the convergence of an initial capital-
labor ratio to unique positive steady state ratio ('optimal balanced growth
path') - replacing the stability issues of stationary state of Ramsey (1928).

The Cass optimal growth (control) model is now one of the most important
theoretical paradigms for dynamic macroeconomic models.
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Qualitative and Quantitative Properties of Dynamic Models

We need to study growth models from a quantitative standpoint, before one
can claim to have explained and parametrically accounted for major
differences in economic growth over time and across counties or other
empirical policy analysis and sound advice.

Besides initial conditions, solutions (time paths) of optimal growth

models (control problems, systems of differential equations) depend critically

on several important parameters involved in the basic technology

(production function) and preference (utility function) assumptions.
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Challenge - de La Grandville (2018) – MD Macro Dynamics

“Optimal growth theory, as it stands today, does not work.

Using strictly concave utility functions systematically inflicts on the economy
distortions that are either historically unobserved or unacceptable by society.”

Response to de La Grandville

Economists need a clear and better understanding of the Euler and

Pontryagin dynamic economic equations,

both from an analytical economic and computational point of view.
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The purpose is to derive and solve, rigorously and quantitatively, the dynamics

of the optimal growth (saving) model for

general production and utility functions    - f(k), u(c). 

Our main theoretical results are Theorem 1 and Lemma 1-3. 

Quantitative Applications

Time paths are actually demonstrated by parametric benchmark 

quantitative solutions of the optimal control dynamic systems. 

Numerical demonstrations with CIES preferences and CES technologies. 

Ramsey saving model is capable of generating persistent endogenous growth.



Abstract
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This paper explores the optimal saving solutions for optimal economic growth
generated endogenously by a Ramsey model. Sufficient conditions are
presented for persistent economic growth within a standard Ramsey model.

In phase diagrams of trajectories (solutions), the optimal path
(trajectory) is a separator. Below the separator, over-saving diminishes
consumption, ultimately leading to a sub-optimal situation where all incomes
are saved. Above the separator under-saving suddenly collapses the economy
as its productive capital vanishes to zero.

The paper gives comprehensive numerical applications for CIES preferences
and CES technologies, together with parametric sensitivity analyses of the
optimal solutions.
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• The representative consumer has a time additive intertemporal cardinal utility function,
, (Integrand), in continuos time summed for, 

• Dynamics of the capital-labor ratio :



Normative Capital Accumulation – Optimal Saving
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• Production function

• The Production function f(k) is strictly concave and monotonic increasing

• Factor accumulation is one-sector (good) macro models become



The Ramsey Problem – The Hamilton Function
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is equivalent to maximizing the current value Hamiltonian function,  

The Ramsey optimization (control, maximum) problem is:

with a Lagrange multiplier (costate, adjoint) variable, λ(t), and the transversality conditions:

First order (necessary) conditions by the maximum principle are, 

and with the necessary (“Euler”) condition – a costate (adjoint) equation of motion for λ,



Change of the State Variables from (λ, k) to (c, k)
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IES, intertemporal elasticity of substitution :

or reciprocal :

We have the “Euler-Ramsey rule” of Consumption, Optimal Saving, Capital Accumulation :

Elimination of λ•

•

•

and the “Euler-Ramsey rule” as one ordinary autonomous differential equation in (k, c) : 

or alternatively the “Euler-Ramsey rule” as optimal changes in ‘observable’ per capita consumption, c



Dynamic System of Optimal Consumption – Optimal Saving
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•

•

•

•

•

Growth rate of per capita income, •

Saving rate,                          :                         



CES Production Function Y = F(L, K)
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Parameters :

•

•

•

•

•

•

•



Steady State (Saddle Point) Solutions
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In the CES case, the dynamic system becomes

If they exist, steady-state values of capital-labor ratios and per capita consumption
in optimal one-sector growth models are singular/critical points, 

Table 1, the optimal saving rates, s(k), are always less than ek(k), (“golden rule” saving rate):



Parameter Values
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Real Interest Rate    MPK - 0.07 - 0.11     - OECD Economies

Real Interest Rate    MPK - 0.12 - 0.17     - Poor Countries

Capital intensity a - 0.2 – 0.6        - Labor intensity (1-a)

Substitution elasticity - 0.5 – 2.5

•

•

•

•

Total Factor Productivity - 0.3 – 3.0•

Discount rate (Time Preference)   - 0.05 – 0.10     - 0.12 – 0.17 •

Depreciation Rate - 0.03 – 0.06•
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Table 1. Parameters for optimal growth models : CES cases with steady states or asymptotics.  



Persistent Growth - Asymptotic Growth : 
Solutions - c(t), k(t) - and the Phase Portrait
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Assumption 1. Technology: The per capita function f(k), has continuity and differentiability properties,  

Further, it is assumed for persistent growth that for a concave function with f(k)  m  as k :

Figure 1: Dynamics with optimal saving

•

•

,

No stationary solutions exist in the closed first quadrant , [except for (0, 0)]



Persistent Growth : Solutions – Phase Portrait

19
Figure 2.a: The positive invariant región      , 
with endogenous (persistent) per capita growth

Separator – Optimal Trajectory

Theorem 1. Optimal (Ramsey) Saving - Persistent Endogenous per Capita Growth

, Figure 1

2

1

2

1

3

Figure 2.b: curve C = CI UCII U{(1,0), (0,1)} (closed set),CII must
be an open and connected set of C. CI U{(1,0)} must be a closed set
with the end point (k, c) of curve CI, where Q(t)  passes.  



Coordinate Transformations and Transformed Solutions
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• Saddle point and optimal trajectory in transformed coordinates – Reversing time variable

• Asymptotic growth rates :



Applications – Solutions with CIES and CES
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CIES and CES solutions with their seven parameters :

CES case, the dynamic system becomes

CIES :

Theorem 1 is satisfied with :

Isocline :

Theorem 1 : 



22

• The transformed dynamic system is

• The singularities (saddle point and node point) become, 

• Hence the long-run (asymptotic) saving rate (s*) is given by, 

Applications – Solutions with CIES and CES

• CES-baseline parameters give exactly the numbers : b = z* = 0.20, x* = 0.15, s* = 0.25



23 Figure 4: The transformed phase portrait in the (z, x) space. CES-baseline case.

Transformed Solutions, Phase Portrait : CIES and CES 
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Figure 3 : The phase portrait in the state (k, c) space, CES-baseline case.

Solutions and Phase Portrait with CIES and CES
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Figure 5 : The time paths for: k(t), c(t), y(t), and s(t). CES-baseline case.

Solutions and Phase Portrait with CIES and CES
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Figure 6 : The time paths for: c(t), short run and long run, CES-baseline case

Solutions and Phase Portrait with CIES and CES



:  0.5 – 5.0 
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Parameter Sensitivity of Optimal Time Paths

Table 2. The Parameter Sets used in Sensitivity Analyses.

Figure 7 : Low Y/high p, Table 2. Time paths for s(t) and (t) in primitive (k(0) = 100) and mature (k(0) = 1000) economies.

Relative Risk Aversion

Intertemporal elasticity of substitution :     = 1/

: 2.0 – 0.5

= 1 =     : 

Asymptotic equivalence (t = dd),  



28

Parameter Sensitivity of Optimal Time Paths

Figure 8 : High /low σ, Table 2. Time paths for s(t) and   (t) 
in primitive (k(0) = 100) and mature (k(0) = 1000) economies. 
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Phase Portraits with the Extended CD Function

• The Ramsay dynamic system becomes with extended CD and CIES 

• The transformed dynamic system becomes
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Figure 9 : The phase portrait (orbits) in the state
(k, c) space. Extended CD.

Figure 10 : The time paths for: k(t), c(t), 
y(t), and s(t). Extended CD.

Solutions and Phase Portrait with CIES and extended CD
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The Ramsey Model with CES function :            .

• The Ramsay dynamic system : Optimal control system is Affine dynamics

• The transformed non-linear dynamic system of the Affine dynamics becomes :

• Saddle point of transformed system with asymptotic saving/growth rates, are :
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The Ramsey Model with CES function :            .

• The Ramsay dynamic system : Optimal control system is Linear dynamics

• The triangular coefficient matrix implies that, 

-

using CES-baseline parameters : 

• The isocline, k = 0, as a straight line : 
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The Ramsey Model with Closed Form Solutions

• The unique separator, optimal time paths, Q(t), along the trajectory are expressed by :

• The constant (time invariant) optimal saving rates si(t) along the separator is : 

• Ray (“eigen-vector”) with slope - oi - is the trajectory for the separator

• All time paths Q(t) – General Solution [k(t), c(t)] – have the closed form : 

• Time paths for k(t)/c(t) and some non-optimal saving paths s(t), are given by : 

• In eigen-vector space, the phase portraits of the General Solution is called an unstable
node, Pontrygain (1962, p.117), Birkoff & Rota (1989, p.148) and Arnold (1973, p.118) 
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Solutions and Phase Portrait - CIES and Linear Dynamics

Figure 11.a Figure 11.b Figure 11.c Figure 11.d

Figure 11a. The Phase Portrait – Q(t) – in the state (k, c) space ; k(0) = 1 with initial (control) values : 
co = 0,15, separator ; Fig. b-d : k(0) = 100 : co = 15, 

Figure 11b. Ramsey Model Time paths for k(t) : Q(t) – short run.
Figure 11c. Ramsey Model Time paths for c(t) : Q(t) – long run.
Figure 11d. Ramsey Model Time paths for s(t) : Q(t) – short run and long run.



Conclusion
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We have derived and computed the optimal saving solutions for optimal
economic growth generated endogenously by a Ramsey model. Sufficient
conditions are presented for persistent economic growth within a “standard
parametrically unified Ramsey model”.

In phase diagrams of trajectories (solutions), the optimal path
(trajectory) is a separator. Below the separator, over-saving diminishes
consumption, ultimately leading to a sub-optimal situation where all incomes
are saved. Above the separator under-saving suddenly collapses the economy
as its productive capital vanishes to zero.

Comprehensive numerical applications for CIES preferences and CES
technologies, together with parametric sensitivity analyses of the optimal
solutions were demonstrated.



• Asymptotic “real interest rates” (  ) – Asymptotic growth rate (  ) – Saving rates (  ), are :

Final Comments and Suggestions
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• Existent conditions for the optimal solutions – separator – were :

• Benchmark solutions were :                                              

• We used the additive intertemporal cardinal utility function : 
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