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It is well-known that any covering space of a Riemannian manifold has the natural
structure of a Riemannian manifold. This article contains a noncommutative generaliza-
tion of this fact. Since any Riemannian manifold with a Spin-structure defines a spectral
triple, the spectral triple can be regarded as a noncommutative Spin-manifold. Similarly
there is an algebraic construction which is a noncommutative generalization of topological
covering. This article contains a construction of spectral triple on the "noncommutative
covering space".
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1 Motivation. Preliminaries

1.1 Prototype. Coverings of Riemannian manifolds
This article proves a noncommutative generalization of the following proposition.
Proposition 1.1. (Proposition 5.9 [14])

1. Given a connected manifold M there is a unique (unique up to isomorphism) universal
covering manifold, which will be denoted by M.

2. The universal covering manifold M is a principal fibre bundle over M with group 7r1(M)
and projection p : M — M, where rr1(M) is the first homotopy group of M.

3. The isomorphism classes of covering spaces over M are in 1:1 correspondence with the con-
jugate classes of subgroups of 111(M). The correspondence is given as follows. To each
subgroup H of 7t1(M), we associate E = M/ H. Then the covering manifold E correspond-
ing to H is a fibre bundle over M with fibre 7r1 (M) / H associated with the principal bundle
M(M, t;(M)). If H is a normal subgroup of 7t,(M), E = M/H is a principal fibre bundle
with group 111 (M) /H and is called a regular covering manifold of M.

1.2. If M is a covering space of Riemannian manifold M then it is possible to give M a
Riemannian structure such that 77 : M — M is a local isometry (this metric is called the
covering metric). cf. [9] for details.

Gelfand-Naimark theorem [2] states the correspondence between locally compact Haus-
dorff topological spaces and commutative C*-algebras.

Theorem 1.3. [2] (Gelfand-Naimark). Let A be a commutative C*-algebra and let X be the
spectrum of A. There is the natural x-isomorphism y : A — Co(X).

So any (noncommutative) C*-algebra may be regarded as a generalized (noncommuta-
tive) locally compact Hausdorff topological space. Articles [12}[18] contain noncommuta-
tive analogs of coverings. The spectral triple [11/21] can be regarded as a noncommutative
generalization of Riemannian manifold. Having analogs of both coverings and Rieman-
nian manifolds one can proof a noncommutative generalization of the Proposition [L.1



Following table contains a list of special symbols.

Symbol Meaning
AC Algebra of G-invariants, i.e. A ={a€ A|ga=a,Vge G}
Aut(A) Group * - automorphisms of C* algebra A
B(H) Algebra of bounded operators on a Hilbert space H
C (resp. R) Field of complex (resp. real) numbers
C(X) C* - algebra of continuous complex valued
functions on a space X
Co(X) C* - algebra of continuous complex valued functions on a topological
space X equal to 0 at infinity
Ce(X) Algebra of continuous complex valued functions on a
topological space X with compact support
G(X | X) | Group of covering transformations of covering projection X — X [20]
H Hilbert space
K=K(H) C* - algebra of compact operators
K(A) Pedersen ideal of C*-algebra A
ligq Direct limit
1'an Inverse limit
M(A) A multiplier algebra of C*-algebra A
M, (A) The n x n matrix algebra over C*— algebra A
IN A set of positive integer numbers
INO A set of nonnegative integer numbers
G/G' CG A set of representatives of a quotient group G/G’
s The n-dimensional sphere
()] Field of rational numbers
Z Ring of integers
Zy Ring of integers modulo n
kez, An element in Z, represented by k € Z
X\A Difference of sets X\A ={x € X |x ¢ A}
|X]| Cardinal number of the finite set
flar Restriction of amap f: A — Bto A’ C A, ie. f|lp: A’ =+ B




1.2 Topology
1.2.1 Coverings

Definition 1.4. [20] Let 7 : X — X be a continuous map. An open subset Y C X is
said to be evenly covered by 7 if 7~ (U) is the disjoint union of open subsets of X each
of which is mapped homeomorphically onto 2/ by 7. A continuous map 7 : X — X is
called a covering projection if each point x € X has an open neighborhood evenly covered
by 7. X is called the covering space and X the base space of the covering.

Definition 1.5. [20] A fibration p : X — X with unique path lifting is said to be regular
if, given any closed path w in X, either every lifting of w is closed or none is closed.

Definition 1.6. [20] A topological space X is said to be locally path-connected if the path
components of open sets are open.

Denote by 11 the functor of fundamental group [20].

Theorem 1.7. [20] Let p : X — X be a fibration with unique path lifting and assume that a
nonempty X is a locally path-connected space. Then p is reqular if and only if for some Xy € X,

m (p) m (AN,’, 370) is a normal subgroup of 11 (X, p (Xo)).

Definition 1.8. [20] Let p : X — X be a covering. A self-equivalence is a homeomorphism
f: X — X such that po f = p. This group of such homeomorphisms is said to be the

group of covering transformations of p or the covering group. Denote by G (X | X ) this
group.

Proposition 1.9. [20] If p : X — X is a regular covering and X is connected and locally path
connected, then X is homeomorphic to space of orbits of G (2? | X ) ie. X ~ X/G (2? | X )
So p is a principal bundle.

Corollary 1.10. [20] Let p : X — X be a fibration with a unique path lifting. If X is connected
and locally path-connected and Xy € X then p is reqular if and only if G (.)? | X ) transitively
acts on each fiber of p, in which case

¥:G (2? | X) ~m (X, p (%)) /m(p) m (2?,550).

Remark 1.11. Above results are copied from [20]. Below the covering projection word is
replaced with covering.

1.2.2 Vector bundles

We refer to [13] for a notion of (locally trivial) vector bundle with base X and an inverse
image of a vector bundle. For any topological space X there is a category Vect(X') of vector
bundles with base X'. If f : X — Y is a continuous map then there is an inverse image



functor f* : Vect(Y) — Vect(X) (cf. [13]). Let 7t : X — X be a covering projection, and let
E € Vect(X), E = m*E is an inverse image. Any C-(anti)linear map ¢ from I'(X, E) (resp.
dense C-subspace of X C I'(X,E)) to I'(X, E) naturally induces a C (anti)linear map ¢*

from T (2?, E) (resp. dense C-subspace of XcT ()?, E)) tol (2?, E)

112, Let 7 : X — X be a covering projection, and let E € Vect(X), E = 7*E be an
inverse image. If &/ C X is an open subset such that a restriction 7|y : U — (U) = U

is a homeomorphism. Then there are *-isomorphism C (27) = C(U) and isomorphism
r (Z],E\H) ~TUE). fX=T(X,E)orXCT (z\?,ﬁ) is a dense subspace, ¢ : X —
I'(X,E) is C (anti)linear map, and then there is a following commutative diagram

Rlg % 1 (a,5y)

~
~

Q

®lu

Xy r (u,E|u)

Definition 1.13. The map ¢* is said to be an inverse image or lift of ¢.

1.14. Let X be a topological space and S the complex linear bundle on X. Suppose that
for any x € X there is the scalar product (-,-), : Sy x Sy — C and there is a measure .y
on X. If I'(M,S) is the space of continuous sections of S then we suppose that for any
¢,n € I'(M,S) the map X — C given by x — (Cx,%x), is continuous. There is the scalar
product (-,-) : T (M,S) xI' (M,S) — C given by

(& n) = /X (Cxsmx) d px

Denote by L2 (X, S, iy) or L2 (X, S) the Hilbert norm completion of I' (M, S). There is the
natural representation

Co(X) — B (L2 (X,S)) . (1.1)

Definition 1.15. In the situation of [.14 we say that S is Hermitian vector bundle.

1.2.3 Locally compact spaces

In this article we consider second-countable locally compact Hausdorff spaces only [16].
So we will say a "topological space” (resp. "compact space” ) instead "locally compact
second-countable Hausdorff space” (resp. "compact second-countable Hausdorff space").
This subsection contains well known facts, I follow to [16].

There are two equivalent definitions of Cy (X') and both of them are used in this article.



Definition 1.16. An algebra Cy (X') is the norm closure of the algebra C. (X') of compactly
supported continuous functions.

Definition 1.17. A C*-algebra Cy (XX') is given by the following equation
Co(X)={p € Cp(X) |Ve>0 IKC X (Kis compact) & Vx € XY\K |¢ (x)| < e},

ie.
H€0|X\KH <e&

Theorem 1.18. [[16] Every compact Hausdorff space is normal.

Theorem 1.19. [16] Urysohn lemma. Let X be a normal space, let A, B be disjoint closed
subsets of X. Let [a,b] be a closed interval in the real line. Then there exist a continuous map
f:X — [a,b] such that f(A) = {a} and f(B) = {b}.

Theorem 1.20. [16] Urysohn metrization theorem. Every regular space with a countable basis
is metrizable.

From the Theorems [1.1§ and [L.I9it follows that if X is locally compact Hausdorff space
x € X, and B is closed subset of X, such that x ¢ B then there exist a continuous map
f:X — [a,b] such that f(x) = aand f(B) = {b}. It means that locally compact Hausdorff
space is completely regular, whence X is regular (cf. [16]), and from the Theorem it
follows next corollary.

Corollary 1.21. Every locally compact second-countable Hausdorff space is metrizable.
Theorem 1.22. [[16] Every metrizable space is paracompact.

Definition 1.23. [16] If ¢ : X — C is continuous then the support of ¢ is defined to
be the closure of the set ¢! (C\{0}) Thus if x lies outside the support, there is some
neighborhood of x on which ¢ vanishes. Denote by supp ¢ the support of ¢.

Definition 1.24. [16] Let {U, € X'}, be an indexed open covering of X. An indexed
family of functions
¢Pu s X —[0,1]

is said to be a partition of unity , dominated by {Un} ), if:
L. g (X\Us) = {0}
2. The family {supp (¢a) = cl ({x € X' | ¢ > 0})} is locally finite.
3. Yaej¢a (x) =1forany x € X.

Theorem 1.25. [16] Let X' be a paracompact Hausdorff space; let {Uy € X'}, ) be an indexed
open covering of X. Then there exists a partition of unity, dominated by {Uy }.



1.3 Inverse limits of coverings

This subsection is concerned with a topological construction of the inverse limit in the
category of coverings.

Definition 1.26. The sequence of regular finite-fold coverings
X=Xy ... Xy ..

is said to be a (topological) finite covering sequence if following conditions hold:

e The space &, is a second-countable [16] locally compact connected Hausdorff space
for any n € INY,

e If k < | < m are any nonnegative integer numbers then there is the natural exact

sequence
{e} = G (X | A7) = G (X | Xk) = G (A | A) — {e}

For any finite covering sequence we will use a following notation
C={X¥=A)« .. X . }={A— .. X, ..}, 6¢€FinTop.

Definition 1.27. Let {X = Xy ... ¢ Xy « ..} € FinTop, and let X = lim X, be the
inverse limit in the category of topological spaces and continuous maps (cf. [20]). If
7y : X — X is the natural continuous map then homeomorphism g of the space X
is said to be a covering transformation if the following condition holds

ﬁozﬁoog.

The group G of covering homeomorphisms is said to be the group of covering transformations

of &. Denote by G (2? | X) L E.

Definition 1.28. Let & = {&) < ... < &), < ...} be a finite covering sequence. The pair
(y, {m)} GN) of a (discrete) set ) with and surjective maps 7ty : J — X}, is said to be a

coherent system if for any n € IN? a following diagram

y
V Wf
7T
X - Xn—1

is commutative.

Definition 1.29. Let G = {&)) + ... <~ X, < ...} be a topological finite covering sequence.
A coherent system ()/, {71,%’ }) is said to be a connected covering of & if ) is a connected
topological space and 71y is a regular covering for any n € IN. We will use following
notation (Y, {7y'}) | & orsimply V | &.



Definition 1.30. Let (), {n%)}) be a coherent system of G and y € V. A subset V C ) is
said to be special if 7'[8) (V) is evenly covered by X; — Xj and for any n € IN? following
conditions hold:

e 1) (V) C X, is an open connected set,
e The restriction 7’|y, : V — 7 (V) is a bijection.

Remark 1.31. If (Y, {7}}) is a covering of & then the topology of ) is generated by
special sets.

Definition 1.32. Let us consider the situation of the Definition A morphism from
(y', {7‘[%/}) 1 & to (y", {7‘(,%’”}) 1 & is acovering f : ' — Y’ such that

7_[91]// Of _ 7_[1/)1}/
for any n € IN.

1.33. There is a category with objects and morphisms described by Definitions
Denote by | & this category.

Lemma 1.34. [12]] There is the final object of the category | & described in[1.33

Definition 1.35. The final object (2? , {n{f }) of the category | & is said to be the (topolog-

ical) inverse limit of | &. The notation (.)?, {n;f}) = @ J 6 or simply X = @1 $ 6 will
be used.

1.4 Hilbert modules

We refer to [3] for definition of Hilbert C*-modules, or simply Hilbert modules. For
any ¢, € Xx let us define an A-endomorphism 6 given by 6z (1) = (¢, 7)x, where
1 € X4. Operator 0 shall be denoted by ¢) (. Norm completion of algebra generated
by operators 0z is said to be an algebra of compact operators K(X,). We suppose that
there is a left action of K(X,4) on X4 which is A-linear, i.e. action of K(X,4) commutes
with action of A.

1.5 C*-algebras and von Neumann algebras
In this section I follow to [19].

Definition 1.36. [19] Let # be a Hilbert space. The strong topology on B (H) is the
locally convex vector space topology associated with the family of seminorms of the form

x+— ||x&||, x € B(H), & € H.

Definition 1.37. [19] Let H be a Hilbert space. The weak topology on B (H) is the locally
convex vector space topology associated with the family of seminorms of the form x —

|(x&1)|, x € B(H), & € H.



Theorem 1.38. [[19] Let M be a C*-subalgebra of B(#), containing the identity operator. The
following conditions are equivalent:

o M = M" where M" is the bicommutant of M;
o M is weakly closed;
o M is strongly closed.

Definition 1.39. Any C*-algebra M is said to be a von Neumann algebra or a W*- algebra if
M satisfies to the conditions of the Theorem [[.38

Definition 1.40. [19] Let A be a C*-algebra, and let S be the state space of A. For any
s € S there is an associated representation 77s : A — B (). The representation @, ¢ 7t :
A — @Pycs B (Hs) is said to be the universal representation. The universal representation
can be regarded as A — B (P,cs Hs)-

Definition 1.41. [19] Let A be a C*-algebra, and let A — B (H) be the universal represen-
tation A — B (#). The strong closure of 7t (A) is said to be the enveloping von Neumann

algebra or the enveloping W*-algebra of A. The enveloping von Neumann algebra will be
denoted by A”.

Theorem 1.42. [[19] For each non-degenerate representation 7w : A — B (H) of a C*-algebra A
there is a unique normal morphism of A" onto 7t (A)" which extends .

Lemma 1.43. [19] Let A be an increasing net in the partial ordering. Let {x)}, .o be an
increasing net of self-adjoint operators in B (H), i.e. A < p implies x) < xy. If [|x, || < 7 for
some v € R and all A then {x,} is strongly convergent to a self-adjoint element x € B (H) with
leall < -

For each x € B(H) we define the range projection of x (denoted by [x]) as projection on
the closure of xH. If M is a von Neumann algebra and x € M then [x] € M.

Proposition 1.44. [19] For each element x in a von Neumann algebra M there is a unique partial
isometry u € M and positive |x| € My with uu* = [|x|] and x = |x|u.

Definition 1.45. The formula x = |x|u in the Proposition [[.44 is said to be the polar
decomposition.

1.46. Any separable C*-algebra A has a state T which induces a faithful GNS representa-
tion [17]. There is a C-valued product on A given by

(a,b) =t (a*D).

This product induces a product on A/Z; where Z; = {a € A | 7(a*a) =0}. So A/Z; is
a pre-Hilbert space. Let denote by L? (A, T) the Hilbert completion of A/Z;. The Hilbert
space L% (A, T) is a space of a GNS representation of A.
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1.6 Connections

Definition 1.47. [5] Let A % Q be a cycle over 4, and £ a finite projective module over
A. Then a connection V on & is a linear map V : £ — € ® 4 Q! such that

V(iEx)=V(@)x=C®dp(x); V€&, Vxe A (1.2)

Here € is a right module over A and Q! is considered as a bimodule over A.
Remark 1.48. The definition of the cycle is given in [5].
Proposition 1.49. [5] Following conditions hold:

(a) Let e € End 4 (£) be an idempotent and V is a connection on E; then

F—(e®@1) V¢
is a connection on e&,
(b) Any finite projective module £ admits a connection,

(c) The space of connections is an affine space over the vector space Hom 4 (€,€ ® 4 Q).

1.7 Finite Galois coverings

Here I follow to [1]. Let A < A be an injective homomorphism of unital algebras, such
that

e A is a projective finitely generated A-module,

e There is an action G x A — A of a finite group G such that
A=A°={aecd|gi=7;¥geG}.
Let us consider the category .# 1%; of G — A modules, i.e. any object M € .# EG is a A-
module with equivariant action of G, i.e. for any m € M a following condition holds
g (@m) = (ga) (gm) foranya € A, g € G.
. . . G : _ . . .
Any morphism ¢ : M — N in the category .# 7 1s G- equivariant, i.e.
¢ (gm) =g (m) foranyme M, g € G.

Let A [G] be an algebra such that A [G] ~ A x G as an Abelian group and a multiplication
law is given by

(a,8) (b,h) = (a(gb), gh).
The category .# 1%; is equivalent to the category .# (] of A [G] modules. Otherwise in [T] it

is proven that if A is a finitely generated, projective A-module then there is an equivalence
between a category .#,4 of A-modules and the category .# iG]’ It turns out that the

category .4 1% is equivalent to the category .#4.
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1.8 Spectral triples

This section contains citations of [11].

1.8.1 Definition of spectral triples
Definition 1.50. [11] A (unital) spectral triple (A, H, D) consists of:

e a pre-C*-algebra A with an involution a — a*, equipped with a faithful representa-
tion on:

e a Hilbert space H; and also

e a selfadjoint operator D on H, with dense domain Dom D C H, such that a(Dom D) C
Dom D for alla € A.

There is a set of axioms for spectral triples described in [11/21]]. In this article the regularity
axiom is used only.

Axiom 1.51. [21](Regularity) For any a € A, [D,a] is a bounded operator on H, and
both a and [D, a] belong to the domain of smoothness (;>.; Dom(&¥) of the derivation &

on B(H) given by §(T) def [|D], T].

Lemma 1.52. [11] Let A be an unital Fréchet pre-C*-algebra, whose C*-completion is A. If
§ = §* = §* is a projection in A, then for any e > 0, we can find a projection q = ¢*> = q* € A
such that ||qg — §|| < e.

1.8.2 Representations of smooth algebras

Similarly to [15] we define a representation of 7t' : A — B(H?) given by

ml(a) = ([Da,a] 2) . (1.3)

We can inductively construct representations 7° : A — B (’Hf) for any s € IN. If 7r° is

already constructed then 777! : A — B (’HZS“) is given by

vy 7@ 0
@ = (i) o) a4

where we assume diagonal action of D on H?, i.e.
X1 DX1
Dl .. = 5 X1, ., Xos € H.
X2s Dst

12



For any s € IN? there is a seminorm ||-||; on A given by

lally = ll7=* (@)]] - (1.5)
The definition of spectral triple requires that 4 is a Fréchet algebra with respect to semi-
norms |-,
1.8.3 Noncommutative differential forms

Any spectral triple naturally defines a cycle p : A — Qp (cf. Definition [.47). In
particular for any spectral triple there is an .4 module Q}, C B (H) of differential forms
which is a linear span of operators given by

a[D,b]; a,b € A (1.6)
There is differential map
d: A— Qb (1.7)
a [D,a]. '

2 Noncommutative finite-fold coverings

2.1 Basic construction

Definition 2.1. If A is a C*- algebra then an action of a group G is said to be involutive if
ga* = (ga)* for any a € A and ¢ € G. The action is said to be non-degenerated if for any
nontrivial g € G there is a € A such that ga # a.

Definition 2.2. Let A < A be an injective *-homomorphism of unital C*-algebras. Sup-
pose that there is a non-degenerated involutive action G x A — A of a finite group G, such

that A = AG &' {a CAl|la=ga Vg€ G}. There is an A-valued product on A given by

(a,b) ;=) g(ab) (2.1)

geG
and A is an A-Hilbert module. We say that a triple (A, A, G) is an unital noncommutative
finite-fold covering if A is a finitely generated projective A-Hilbert module.
Remark 2.3. Above definition is motivated by the Theorem 4.1
Definition 2.4. Let A, A be C*-algebras such that following conditions hold:

(a) There are unital C*-algebras B, LE and inclusions A C B, A C B such that A (resp. B)
is an essential ideal of A (resp. B),

(b) There is an unital noncommutative finite-fold covering (B, B, G) ,

13



(c)
A:{aeﬁ\ <§,a>§eA}. 2.2)

The triple (A, A, G) is said to be a noncommutative finite-fold covering. The group G is said

to be the covering transformation group (of (A, A, G) ) and we use the following notation

G (A | A) def . 2.3)
Lemma 2.5. Let us consider the situation of the Definition Following conditions hold:
(i) From 2.2) it turns out that A is a closed two sided ideal of B,
(i) The action of G on B is such that GA = A, i.e. there is the natural action of G on A,
(iii)
A%ﬁcz{aeg\a:ga;VgeG}. (2.4)
Remark 2.6. The Definition [2.5is motivated by the Theorem

Definition 2.7. The injective *-homomorphism A < A, which follows from (24) is said
to be a noncommutative finite-fold covering.

Definition 2.8. Let (A, A, G) be a noncommutative finite-fold covering. The algebra A is
a Hilbert A-module with an A-valued product given by

(a,b) =) g(a*b); a,be A. (2.5)
geG

We say that this structure of Hilbert A-module is induced by the covering (A, E, G). Hence-

forth we shall consider A as a right A-module, so we will write A 4.

2.2 Induced representation

2.9. Let (A, A, G) be a noncommutative finite-fold covering, and let p : A — B (#) be a

representation. If X = A ® 4 H is the algebraic tensor product then there is a sesquilinear
C-valued product (-, )y on X given by

(@®&b@n)x = (8 (a,b)z1), (2.6)

where (-, -),, means the Hilbert space product on H, and (-, -) ; is given by 2.5). So X is
a pre-Hilbert space. There is a natural map p : A x (ﬁ ®a ’H) — A ®4 H given by

(,b¢) —ab®¢.
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Definition 2.10. Use notation of the Definition 2.8, and If H is the Hilbert completion
of X = A®, H then the map p : A x (A Ra H) — A ®4 H induces the representation

p:A—B (ﬁ) We say that p is induced by the pair (p, (A, A, G))
Remark 2.11. Below any a ® ¢ € A @4 H will be regarded as element in H.
Lemma 2.12. [12] If A — B (H) is faithful then : A — B (#) is faithfil.

2.13. Let (A, A, G) be a noncommutative finite-fold covering, let p : A — B (#) a faithful
representation, and let p : A—B (’}-Nl) is induced by the pair (p, (A, A, G) ) There is the
natural action of G on ‘H induced by the map
g(@RE) = () @& acA geG, EcH.
There is the natural orthogonal inclusion H C H induced by inclusions
ACA; AR HC AR H.

Action of ¢ on A can be defined by representation as g@ = gag ', i.e.

sz =g (a(s7'¢)); ¥e e A.

2.3 Coverings of spectral triples

Definition 2.14. Let (A, H, D) be a spectral triple, and let A is the C*-norm completion of
A. Let (A, A, G) be an unital noncommutative finite-fold covering. Let p : A — B (#) be

a natural representation, and let 5 : A — B (ﬁ) be a representation induced by the pair

(p, (A, A, G)) A spectral triple (./T, H, f)) is said to be a (A, A, G) -lift of (A, H, D) if
following conditions hold:

(a) Aisa C*norm completion of A,
(b) D(1;®4¢&) =1;®4 D& V& € DomD,
(c) D (gg) =g (55) forany ¢ € Dom D, g € G.

2.15. Consider the situation of the Definition 214 The algebra A is a finitely generated
projective A-module, it turns out following direct sum

APA = A"

15



Let us define the action of G on A" such that
gi=g(a+a)=ga+ada

where @ = @+a’ € A", @ € A and @’ € A’. The action of G on A" naturally induces an
action of G on End4 A" given by

(gp) (@) =goo (gflﬁ) ; where g € G, a€ A", ¢ € EndyA".

There is the natural bijection M, (A) ~ EndsA", so there is a natural action of G on
M, (A). There is a projection p € M, (A) such that
A =pA"

From the definition of the action of G on M, (A) it follows that gop = p for any g € G.
The subalgebra M, (A) C M, (A) is dense, it turns out that for any ¢ > 0 there is an
idempotent f € M, (A) such that ||p — f|| <e. If

f‘ _ deG gf
mv | G |
then following conditions hold:
lp = fll <,

finv = finy; for any g € G.

From the Lemma it follows that there is a projection p € IM;, (A) which is similar to
finv and p such that following conditions hold:

gp =p; forany g € G,
peM, (A,
PA" x A.
Let £ = pA" be a projective A-module, let Q} be given by (L6). From the Proposition
it follows that there is a connection

V'€= E@40b.
Let us define a connection

6'5%5@,401,

Z (V' (s3)
8€G
The connection V is equivariant, i.e.
V(g1) =g (V(@); foranyge G aeé. 2.7)
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Let H* = (1,1 Dom D", and let us define an operator D:E@4H® — E®4H® such
thatifa € £ and

m
Vv (E) = Zﬁj X wj
j=1

then .
D@®¢) =Y 40w () +a® DE. (2.8)
j=1

The space £ ® 4 H™ is a dense subspace of the Hilbert space H = A ®4 H. It turns out
D can be regarded as an unbounded operator on H. Denote by 4 a derivation on B (ﬁ)
given by

5(T) &f H D

.
Denote by
A= {ae A=pa"| [D,a] €B(H) &a,|D,a| € ) Dom (Sk)} (2.9)
k=1
From the above equation it turns out:
e A is a subalgebra of A,
e GA=A,
e A=E¢.
Using A = € on can write L N
V:A— Aoy 0l
instead of L
V:E—=E40h.
Lemma 2.16. In the above situation there is the unique G-equivariant connection
V:A— Aoy Ok,
Proof. It follows from the Proposition that the space of connections is an affine space
over the vector space Hom 4 (./Z, A® 4 Q})) The space of G-equivariant connections is an

affine space over the vector space Homfl (./T, A4 Q}J) of G-equivariant morphisms, i.e.
morphisms in the category ///E (cf. 7). However from [[.7it follows that the category

///E is equivalent to the category .#4 of A-modules. It turns out that there is a 1-1
correspondence between connections

VA A 0L =0}

17



and G-equivariant connections
V:As A® A Q})
It follows that thee is the unique G-equivariant V connection which corresponds to

V:A— A®,0L =0},
aw— [D,al.

Above reasonings give a following theorem.
Theorem 2.17. If A is given by (2.9), H = A® 4 H and D is given by @.8), then a spectral triple
(.Z, H, 5) isa (A, A, G) -lift of (A, H, D). There is the unique (A, A, G) -lift of (A, H, D).

Remark 2.18. From (Z7) it follows that the operator D is equivariant, i.e.

D (g(,") g (55) ; V€ € Dom G, Vg € G. (2.10)

There are two equivalent ways of definition of operator D from the Theorem 217
(a) Looking for an operator D which satisfies to the Definition 214,

(b) Application of the equation (2.8).

3 Noncommutative infinite coverings

3.1 Basic construction
This section contains a noncommutative generalization of infinite coverings.

Definition 3.1. Let

7.[11+1

6_{A_A0$A13>...E>An—>...}

be a sequence of C*-algebras and noncommutative finite-fold coverings such that:

(a) Any composition 7T, © ... 0 7,11 © Ty : Apy — Ap, corresponds to the noncommu-
tative covering (An,, Any, G (An, | Ang));

(b) If k <1 < m then G (A | Ax) A; = A; (Action of G (An | Ax) on A; means that
G (Am | Ag) acts on Ay, so G (A | Ag) acts on A; since A; a subalgebra of Ay);

18



(c) If k < I < m are nonegative integers then there is the natural exact sequence of
covering transformation groups

{e} = G(An | A1) = G(An | A) ™ G(Ar | Ag) = {e}
where the existence of the homomorphism G (A, | Ay) = G (A; | Ag) follows from
(b).

The sequence & is said to be an (algebraical) finite covering sequence. For any finite covering
sequence we will use the notation & ¢ Fin2lg.

Definition 3.2. Let A = lim A, be the C*-inductive limit [17], and suppose that G =
lim G (An | A) is the projective limit of groups [20]. There is the natural action of G on A.

A non-degenerate faithful representation A—B (H) is said to be equivariant if there is an
action of G on H such that for any ¢ € H and g € G the following condition holds

(s)&=g(a(g7¢))- (3.1)

Example 3.3. Let S be the state space of A, and let A — B (,csHs) be the universal
representation. There is the natural action of G on S given by

(gs)(a) =s(ga); s€S, ac A ged.

The action of G on S induces the action of G on @scs Hs. It follows that the universal
representation is equivariant.

Example 3.4. Let s be a faithful state which corresponds to the representation A — B (Hs)
and { gncG } = G is a bijection. The state

nelN
yo &
n
nelN 2

corresponds to an equvariant representation A — B (69 2cC Hgs).

Definition 3.5. Let 7: A — B (H) be an equivariant representation. A positive element
@ € B(H), is said to be special (with respect to 7) if following conditions hold:

(a) For any n € INU the following series

ap = 2 ga

gcker(G—=G(Aq | A))
is strongly convergent and the sum lies in A, i.e. a, € Ay;

(b) If fe : R — R is given by
0 x<e

X—& x>¢ (3.2)

o) = {
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then for any n € IN? and for any z € A following series

b, = 2 g (zaz*"),
gcker(G=G(Aq | A))

e ) g(zﬁz*)z,
geker(@—>G(An | A))

d, = Y gfe (zaz")

gcker(G—=G(An | A))
are strongly convergent and the sums lie in Ay, i.e. by, ¢y, dy € Ay;

(c) For any &€ > 0 there is N € IN (which depends on @ and z) such that for any n > N a
following condition holds

2
by, — cn

<e (3.3)

An element @’ € B (H) is said to be weakly special if
@' = xdy; where x,y € A, and @ € B (H) is special.

Lemma 3.6. [12] Ifa € B(H)_ is a special element and G, = ker (@ — G (An | A)) then
from
a, = 2 ga,

g€Gy

it follows that @ = lim, 00 a, in the sense of the strong convergence. Moreover one has @ =
infne]l\] an.

Corollary 3.7. [12] Any weakly special element lies in the enveloping von Neumann algebra A"
of A = liqun. If Ax C B(H) is the C*-norm completion of an algebra generated by weakly
special elements then A, C A"

Lemma 3.8. [12] If @ € B (H) is special, (resp. @ € B (M) weakly special) then for any g € G
the element ¢a is special, (resp. ga’ is weakly special).

Corollary 3.9. [12] If Ax C B(H) is the C*-norm ‘completion of algebra generated by weakly
special elements, then there is a natural action of G on Az.

h 7.[11+1

1 2
Definition 3.10. Let G = {A =A== 5 . 5A } be an algebraical finite

covering sequence. Let 77 : A — B () be an equivariant representation. Let A, C B ()
be the C*-norm completion of algebra generated by weakly special elements. We say that
Ar is the disconnected inverse noncommutative limit of | & (with respect to 7). The triple
(A,Zn, G(Ax | A) def @) is said to be the disconnected infinite noncommutative covering of

S (with respect to 7r). If 7t is the universal representation then "with respect to 7" is dropped
and we will write (A, A,G (A | A)).
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Definition 3.11. Any maximal irreducible subalgebra A, C A is said to be a connected
component of & (with respect to 7). The maximal subgroup G C G (A, | A) among sub-
groups G C G (Ar | A) such that GA; = Ay is said to be the A-invariant group of &. If
7t is the universal representation then "with respect to 7t" is dropped.

Remark 3.12. From the Definition 3.11] it follows that G, C G (Zn | A) is a normal sub-
group.
Definition 3.13. Let

T 7.[11+1

1 2
S = {A =A a5 5aA s } € Finlg,

and let (A, Az, G (Ax | A)) be a disconnected infinite noncommutative covering of & with
respect to an equivariant representation 7 : h& Ay — B(H). Let An C Ay be a connected

component of & with respect to 7, and let G C G (Az | A) be the Ay - invariant group
of &. Let hy : G (Ax | A) = G (An | A) be the natural surjective homomorphism. The
representation 7t : hgq An — B(H) is said to be good if it satisfies to following conditions:

(a) The natural *-homomorphism h& A, - M (An) is injective,
(b) If ] C G (Ax | A) is a set of representatives of G (Ax | A) /Gr, then the algebraic

direct sum N
DsAn

is a dense subalgebra of A,
(c) For any n € IN the restriction h,|¢, is an epimorphism, i. e. h,; (Gz) = G (Au | A).
If 7t is the universal representation we say that & is good.

Definition 3.14. Let 6 = {A=A) — A] — ... = A, — ...} € Fin2Alg be an algebraical
finite covering sequence. Let 7 : A — B(#) be a good representation. A connected
component An C Ay is said to be the inverse noncommutative limit of | & (with respect to
7). The Agp-invariant group Gy is said to be the covering transformation group of & (with
respect to 7). The triple (A, ﬁm Gn) is said to be the infinite noncommutative covering of &
(with respect to 7). We will use the following notation

. def ~+
lim| & ¥ A,
o

G (An | A) el

If v is the universal representation then "with respect to 7" is dropped and we will write

(A,A,G), @wed:‘*fﬁandc(ﬁ | A) df .
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Definition 3.15. Let 6 = {A= Ay — A; = ... = A, — ...} € Fin2lg be an algebraical
finite covering sequence. Let 77 : A — B (H) be a good representation. Let (A, An, Gn)

be the infinite noncommutative covering of & ( with respect to 7). Let K (An) be the

Pedersen ideal of A,;. We say that & allows inner product (with respect to 1) if following
conditions hold

(@) Anyae K (An) is weakly special,

(b) For any n € N, and E,E €K (An) the series
ay = ) g (a*i&)
gcker(G=G(An | A))
is strongly convergent and a,, € Aj.

Remark 3.16. If G allows inner product (with respect to 77) then K (An) is a pre-Hilbert
A module such that the inner product is given by

(a5)= T () e a

g8€G

where the above series is strongly convergent. The completion of K (An) with respect to
a norm

all =/ ll@ @

is an A-Hilbert module. Denote by X4 this completion. The ideal K (Kn) is a left An-

module, so X4 is also A ~-module. Sometimes we will write gﬂX A instead X 4.

Definition 3.17. Let & = {A = Ay = A; = ... = Ay — ...} € FinAlg and & allows inner
product (with respect to 77) then K (An) then we say that given by the Remark [3.16] A-

Hilbert module ;7 X, corresponds to the pair (&, ). 1f 7 is the universal representation
then we say that ;X4 corresponds to &.

3.2 Induced representation

letw: A — B (Hr) be a good representation. Let (A, A, Gn) be an infinite noncom-

mutative covering with respect to 77 of &. Denote by W, C B (H) the A-bimodule of
weakly special elements, and denote by

Wr =Wr[)An. (3.4)

If 77 is the universal representation then we write W instead Wi,.
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Lemma 3.18. [12] If &, b € Wy are weakly special elements then a series
Y g (a*é’)
g€Gy
is strongly convergent.

Definition 3.19. Element @ € A is said to be square-summable if the series

Y. g(@a) (3.5)

8€Gx

is strongly convergent to a bounded operator. Denote by L? (An) (or L? (A) the C-space
of square-summable operators.

Remark 3.20. If b € A, and 4 € L2 (A) then

L s(o) ()| <[ & e, | %o (@) @) <[] & s@n
it turns out
AL? (En) c1? (An) 2 (gn) ic2 (An) , 56

i.e. there is the left and right action of A on L2 (ﬁ)

Remark 3.21. If a,b € 2 (ﬁn) then sum YgeG. 8 (E*E) € A" is bounded and G-
invariant, hence } occ, & (E*E) c A"

Remark 3.22. From the Lemma B18it turns out W, C L2 (An)

3.23. Let A — B(H) be a representation. Denote by H a Hilbert completion of a pre-
Hilbert space

L2 (An) ®A H,
~ - (3.7)
with a scalar product (ﬁ@ ¢b® 17) _ = ((f, ( Y g (E*b)) 17) .
H 3€Gr U
There is the left action of A on L2 (An) ®4 M given by
P(ARE)=bhx¢

where @ € L2 (An), b e A, ¢ € H. The left action of A on L? (An) ®a H induces
following representations

p:A—B (ﬁ) ,

p:Ar— B (7—7) .
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Definition 3.24. The constructed in representation p : A; — B (ﬁ) is said to be in-
duced by (p, S, r). We also say that p is induced by (p, (A, An, G (An \ A)) , n). If 77 is an
universal representation we say that p is induced by (p, &) and/or (p, (A, A, G (A \ A) ) ) .
Remark 3.25. If p is faithful, then p is faithful.

Remark 3.26. There is an action of G, on H induced by the natural action of G, on the
A 2-bimodule L2 (A n). If the representation A ~— B (7:2) is faithful then an action of G

on A is given by
()¢ =g (a(s7C)) Vs €G, Vi€ Ay, W A,

3.27. If & allows inner product with respect to 7t then for any representation A — B (H)
an algebraic tensor product 5 X, ® H is a pre-Hilbert space with the product given by

(@@¢,b@n) = (& (a,b)n)
(cf. Definitions and [3.15)
Lemma 3.28. [12] Suppose & allows inner product with respect to 7w and any a € K (An) is

weakly special. If H (resp. ‘H') is a Hilbert norm completion of Wy 4 H (resp. A XA ®aH)
then there is the natural isomorphism H =2 ',

3.29. Let H, be a Hilbert completion of A, ® 4 H which is constructed in the section
Clearly

12 (Ax) @, Ho = 17 (Ar) @4, (An @4 H) = L* (L) @1 H. (3.8)

3.3 Coverings of spectral triples

Definition 3.30. Let (A, H, D) be a spectral triple, and let A be the C*-norm completion
of A with the natural representation A — B (#). Let

i+l

S = {A =Ag A A, T } € FinAlg (3.9)

be a good algebraical finite covering sequence. Suppose that for any n > 0 there is a
spectral triple (A, Hy, Dy), such that

o A, is the C*-norm completion of A,

e There is a good representation 7 : lim A, — B (Hx),

e For any k > [ > 0 the spectral triple (Ay, Hy, Dy) is a (A;, Ay, G (Ax |A;))-lift of
(A, Hy, D).
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We say that

San,p) = {(AH, D)= (Ao, Ho Do), (A1, H1,D1), ..., 310)
(»An; H'rl/ Dn)} '

is a coherent sequence of spectral triples. We write & 4 3, p) € CohTriple.

Let us consider a coherent sequence of spectral triples. Let (A, Ax, Gn) be an infinite

noncommutative covering (with respect to 77) of &. Denote by L? (A n) C Ay the space of
square-summable elements, and denote by J, = ker (G — G (A, |A)). Let us consider a
square-summable element 7 € L2 (A n) and denote by

ap =Y gi € A
8€Jn

Letp: A, — H be induced by (p, (A, A G (ﬁn | A)) , 7'[).

Definition 3.31. In the above situation weakly special element @ € A, is said to by
S (4,#,p)-smooth with respect to 7t (or & 434 p)-smooth if 7t is the universal representation)
if following conditions hold:

(@) a, € Ay for any n € IN.

(b) For any s € IN the sequence {1 M(A) ® 5 (an) € B (7:225) } is strongly conver-

nelN

gent. (The representation 7t : A, — B (’H%S) is given by (1.4)).

(c) The sequence {1 M(A) ® [Dy,an] € B (7-7,) } is strongly convergent and

nelN

lim 1, ) © [D, ] € L2 (4x) ©a 0} € B(H), (cf. Remark B32).

n—oo

(d) The element 7 lies in the Pedersen ideal of Ay ie.deK (An)

Denote by a° = limy 1, (A) ® 115, (ay) in sense the strong convergence, and denote by

WS the space of smooth elements. If 7t is the universal representation then we write W
instead W5.

Remark 3.32. From (3.8) it follows that 1M(Z) ® 715, (ay) (resp. 1M(A) ®a, [Dn,an]) can be
regarded as an operator in B (ﬁzs) (resp. B (7:2))

3.33. There is a subalgebra %smooth C Ax generated by smooth elements. For any s > 0
there is a seminorm ||-||; on Agmooth given by

[l = 11 = || fim 105y © 75 ()| (311)
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Definition 3.34. The completion of Ao in the topology induced by seminorms |-, is
said to be a smooth algebra of the coherent sequence of spectral triples (with respect
to ). This algebra is denoted by A,;. We say that the sequence of spectral triple is good if
Ay is dense in A . If 77 is an universal representation than "with respect to 7 is dropped
and we write A instead of Ar.

3.35. For any @ € WS we denote by

ap = nhflolM(g) &

ko, N
Dy, Y a] =Y dhow el? (An) @4 0h. (3.12)
g€ j=1

If H® = N2_,Dom D" then for any 7 ® & € W ® 4 H™ we denote by

(@@ ) dEfZﬂD@@w )+E®D66L2(ﬁn)®AH, (3.13)

ie. D is a C-linear map from WP ® 4 H*® to L? (ﬁn) ®a H. The space WP @4 H® is
dense in #, hence the operator D can be regarded as an unbounded operator on .

Definition 3.36. The coherent sequence (3.10) of spectral triples is said to be regular (with
respect to 1) if Ay is a dense subalgebra of A7T in the C*-norm topology. If 7 is the
universal representation then "with respect to 77" is dropped.

Definition 3.37. Let (3.10) be a regular coherent sequence of spectral triples. Let & €
Finlg is given by (3.9), and let D be given by (38.13). Let 7 : lim A, — B () be a good

representation. Let (A, A - Gn) be the infinite noncommutative covering (with respect to

1) of &. We say that (ﬂ, H, 5) isa (A, A, Gn)-lift of (A, H,D).

4 Coverings of commutative spectral triples

The Spin-manifold is a Riemannian manifold M with a linear Spin-bundle S described
in [11}21]. The bundle S is Hermitian. Taking into account than any Riemannian manifold
has a natural measure y, there is a Hilbert space L? (M, S) = L? (M, S, i) described in[[.T4
IfT*(M,S) is a C* (M)-module of smooth sections then there is a first order differential
operator I on I'® (M, S). Locally 1D is given by

0
D = Z 7 (* 8x

=

where x; (j = 1, ..., n) are local coordinates on M, ; € Endce () (I (M, S)) are described

in [T1,21]. Since T (M, S) is a dense C-subspace of L? (M, S) operator I can be regarded
as an unbounded operator L2 (M, S). It is shown in [1T}221] that (C°°(M), L2(M,S), D) isa

spectral triple. For any s € IN there is a representation of 7r° : C® (1\71) — B (L2 (M,S )25)
given by (L4).
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4.1 Finite-fold coverings

This section contains an algebraic version of the Proposition [L1l in case of finite-fold
coverings.
4.1.1 Coverings of C*-algebras

Following two theorem state equivalence between a topological notion of a covering
and an algebraical one.

Theorem 4.1. [[18] Suppose X and Y are compact Hausdorff connected spacesand p : Y — X is
a continuous surjection. If C(Y) is a projective finitely generated Hilbert module over C(X') with
respect to the action

(fO)y) = fFWE(p(y)), f € C(V), & € C(X),
then p is a finite-fold covering.

Theorem 4.2. [12] If X, X are locally compact spaces, and 7t : X — X is a surjective continuous
map, then following conditions are equivalent:

(i) The map 7w : X — X is a finite-fold covering with a compactification,
(ii) There is a natural noncommutative finite-fold covering (CO (X),Co (f) , G).

Remark 4.3. The definition of coverings with compactifications is presented in [12].

4.1.2 Topological coverings of spectral triples

Let (C®(M),L?(M,S),?) be a commutative spectral triple, and let 7 : M — M be
a finite fold covering projection. From the Proposition [L.T it follows that M has natural
structure of the Riemannian manifold. Denote by S = 7*S the inverse image of the Spin-

bundle S (cf. [.2.2). Similarly we can define the inverse image D = 7D (cf. Definition

[1.13), and (C°° (1\71) ,L? (1\71, S) l?)) is a spectral triple. We would like to proof that
(c ()12 (#5). D)
is the (c (M), C (1\71) ,G (1\71 | M))-lift of (C® (M), L% (M,S), D).

4.1.3 Induced representation
Let us consider a family of open subsets {{/, C M}, such that
e U, is evenly covered by 7,

e The bundle S is trivial on U,.

27



The space M is compact, so there is a finite subfamily {{/, C M},.; such that M = U, U,.

Proposition 4.4. [4] A differential manifold M admits a (smooth) partition of unity if and only
if it is paracompact.

From the Proposition 4.4 it follows that there is a finite family {e, € C* (M)}, such that

e (M\U) = {0},
Loy = Ler

el

For any : € I there are smooth sections &}, ..., &4mS € T* (M, S) such that for any x € U,
the set {6},](, ey S,icms} C I'yis abasis of I'y. If s € S is a section then

¢ = ZQ, where ¢, = ¢,C.
el
Otherwise there is unambiguous representation
dim S

G = Z 6111{6{

j=1

where a{ € C*(M). In fact any ¢ € I (M, S) can be uniquely represented by the follow-
ing sum

dimS . .
E=Ye Y agl. (4.1)
€l j=1

For any ¢ € I we can select an open connected subset ZZ C M such that ZZ is homeomor-
phically mapped onto U,. If ¢, € C* (M) is given by

_ o Joe(n®) el
e‘m_{ 0 ¥el,

then

Loy = L 8%

geG el

Moreover there for any ¢ € I there are sections E}, .y Eldims ere (]\71, §) which are lifts of

&, ..., cdimS - Similarly to the above construction any element in T (M, S) can be repre-

sented as
dim S ,

e= L Lgh ) alg, (3) wheredy) € €™ (M). (42)

geGiel  j=1
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Now we can establish isomorphism

r (M,8) = ¢ (M) @copn T (M,S),
dimS . dimS .

L L 5 oo (68) = D Eeae T el

geGel j= geGel

Since C*® (M) is dense in C (]\71), and I'* (M, S), (resp. I'® (A7I, §)) is dense in L2 (M,S),

(resp. L2 (A7I, SN)) above isomorphism can be uniquely extended up to C-isomorphism
12 (M,3) = ¢ (M) @cqu) L2 (M,S).
Above formula coincides with construction 2.9 of induced representation. If 7 ® ¢, b® ne

C (1\71) ®cm) T (M,S) C L2 (A7I, SN), u (resp. j) is the Riemannian measure (cf. [9]) on M,
(resp. ]\71) then

(08bon) 4 55 = JoT @) @) ngo i =

M

[T ()@@= (a, (35 rz) rons

gEG(M | M)

Above equation is a version of (2.6). So the representation p : C (1\71) — L? (1\71, §) is
induced by the pair (c (M) — L2 (M, S), (c (M), C (M) ,G (Z\7I | M) ) )

4.1.4 Coverings of spectral triples

Operator I) (which is an inverse image of I9) can be regarded as unbounded operator
on L2 (Z\7I, 5), and satisfies to conditions (b) and (c) of the Definition 2.14 Clearly C (1\71)

is a C*-norm completion of C* (1\71) i.e. condition (a) of the Definition 214 holds. In
result we have the following theorem.

Theorem 4.5. A spectral triple (C°° (1\71) ,L? (1\71, S~) , IND) isa (C (M),C (1\71) ,G (1\71 | M) )—
lift of (C*®(M),L? (M,S), D).

4.2 Infinite coverings

This section contains an algebraic version of the Proposition [I.1lin case of infinite cov-
erings.
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4.2.1 Coverings of C*-algebras

Following theorem states an equivalence between a topological notion of an infinite
covering and an algebraical one.

Theorem 4.6. [12]IfSy = {X = &) + ...« &)y « ...} € FinTop and
Scyx) = {Co(X) = Co(Ap) — ... = Co(Xn) — ...} € FinAlg
is an algebraical finite covering sequence then following conditions hold:
(i) Sc,(x) is good,

(ii) There are isomorphisms:

o lim | 6x) ~ Co (lim | & );
G (l'gligco(;r) | CO(X)) ~G (l'gligx | X)
(cf. Definitions[1.35 and for notation).

4.2.2 The sequence of spectral triples

Let (C® (M),L? (M,S), D) be a commutative spectral triple, and let 71 : M — M be an

infinite regular covering. From the Proposition [L1lit follows that M has natural structure
of the Riemannian manifold. Denote by S = 71*S the inverse image of the Spin-bundle

(cf. L22). Similarly we can define an inverse image ) = 7*IP (cf. Definition [13). Let
G=¢G (]\71 \M) be a group of covering transformations of 7. Suppose that there is a
commutative diagram of group epimorphisms

G

|

G Gy,

such that
e A group G, is finite for any n € N,
¢ N,en ker (G — Gy) is a trivial group.

If ], = ker (G — Gj) then there is the following commutative diagram of coverings

/]

M
nw 701 Ty
M

M1:M/I1 Mn:M/]n
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Clearly G = {M = My < ... < M, < ...} € FinTop is an topological finite covering
sequence. From the Theorem [4.6]it turns out that

GC(M) = {C(M) = C(Mo) — e C(Mn) — }

is a good algebraical finite covering sequence, and the triple
(C(M),c0 (M) ,G=G (Z\7I | M))

is an infinite noncommutative covering of S¢ (). Otherwise from the Theorem it
follows that

S (o (M),12(M,S),p —{(COO( ),L? (M,S),D) = (Cw (MO)’L2<MO/SO)’DO)/-~/

(4.3)
(C°° (My), L? (M, Sn)/wn) ,...} € CohTriple

is a coherent sequence of spectral triples. We would like to proof that & ce (), 12(M,5),)
is regular and to find a (C (M), Co (M) , G)—lift of (C®(M),L*(M,S), D). Denote by
S = 71*S the inverse image of the Spin-bundle S.

4.2.3 Induced representation

Similarly to f.1.3] consider a finite family a finite family {e, € C* (M)},.; of positive
elements such that

e (M\U,) = {0},
M) = ) e

el

and smooth sections &}, ..., #4imS € T (M, S) such that for any x € U, the set {51 e @dlms}
I'y is a basis of I'y. Similarly to 1.3 we define ¢, € C* ( N) is given by

_ o Joe(n®) el
e[(a_{ 0 ¢l

Clearly that elements ¢, are smooth. Similarly to (4.2) we have

dimS .

E=Y Y0 Y a, (ggf) where a/ € C* (M). (4.4)

geGiel j=1

However there is substantial difference between #.2) and (&.4) because first equation op-
erates with finite group G and second one with infinite one. So (4.4) can be regarded as a
point-wise limit. If we regard different finite subsets H C G we obtain finite sums

&=) 2.8 Za ) (s2)-

geH el
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The space of above finite sums coincides with the subspace of sections T® (M,S) C
re (A7I, §) with compact support. Denote by L? (CO (]\71)) Cc G (M) the space of square-
summable elements (cf. Definition B.19). From C, ( ) cL? (CO ( )) and since C, (M)
is dense in Cy (1\71) it turns out C, (1\71) is dense in L2 (Co (M)) There is a C-linear
isomorphism
Te (M,8) = Cc (M) @cn T (M,S),
dimS . dimS .

L ra £, () > Dme £

geGel j=1 gereI
where the set {g €eG| a(g ) # 0} is finite.

Faiébon € C (1\71) ®cm I' (M, S) C L? (Z\7I, §), i (resp. i) is the Riemannian

measure on M, (resp. M) then

(F08ben) 4 e = [T O @ n)n dii =
= / Y (8(@)) 0 @ m)edn = (5, <ﬁ,5>CO(M) 17>L2(M,S).

G(M | M)

Above equation is a version of the scalar product given by (3.7). The space I'c (Z\7I, §)
is dense in L2 (Z\7I, §) and C, (1\71) is dense in L2 (Co (1\71)) It follows that L2 (Z\7I, §)
is the Hilbert completion of C. (]\71) ®c(m) L? (M, S) or, equivalently, L? (]\71, §) is the
Hilbert completion of L2 (Co ( N)) Qc(m) L?(M,S). Soif p : C (M) — L? (M, S) then the
representation p : Cy ( ) — L2 (M S) is induced by the pair

(o (et (1), (51 ).

4.2.4 Coverings of spectral triples

Consider the coherent sequence

S (coo (M), L2(M,5), ) = {(Cm( ),L? (M,S),IZ)) = (C°° (Mp), L? (MO,SO),Do),--.,

(4.5)
(C°° (My), L* (M, Sn)/wn) ,...} € CohTriple

of spectral triples given by @3). If W is a space S (cx(m),12(M,5),p)-smooth elements then
from the condition (d) of the Definition B3Tlit follows that W® c K (c0 (M)) —C (1\71)
For any n € IN denote by 77, : M — M,, the natural covering.
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Lemma 4.7. [12] Following conditions hold:

(i) IfU C M is a compact set then there is N € IN such that for any n > N the restriction
ﬁn|a U SR, (ﬁ) is a homeomorphism,

(i) Ifa € Cc (]\71) N is a positive element then there there is N € IN such that for any n > IN
following condition holds

a(x) X e€supp a& 7, (X) € supp ay

an (7on (%)) = { 0 7y (X) & supp ay (46)

where

ay = Y, g

gcker(G—Gy)

Lemma 4.8. Following condition holds
W cce (M) = e (M) e (M).
Proof. If @ € W* then from the condition (a) of the Definition B:31]it follows that

gcker(G—Gy)

From W® C C, (]\71) and (4.6) it follows that 4 € C*® (M), hence a € C*® (]\71) N C. (]\71)
O

Lemma 4.9. Following condition holds
Cc (1\71) c W=,

Proof. Leta € CZ (M), Let 7t : C* (M,) — B (’H%b) be a representation given by (L.4).
From (4.6) it turns out
lim 1Cb(1\71) X 7'[; (an) = Tl (Zi) (47)

n—0o

in sense of strong convergence. The equation (£7) means that any @ € C (]\71) satisfies

to the condition (b) the Definition (8.31). The manifold is compact, so there is a finite set
{U,} 1 of open sets such that any U, is evenly covered by M — M and M = U, U..
There is a partition of unity

lem) = ;al; where a, € C* (M) . (4.8)
L
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For any ¢ € I we select U, such that the natural map U — U isa homeomorphism. Denote
by e, = \/a, and let ¢, € C° (1\71) is given by

_ o Je(m@®) Tl
e’(x)_{ 0 F¢l,

From (4.8) it follows that
a= ) (ge,) (ge))a (4.9)

(g,z)eG(IVI | M)><I
or, equivalently, if &, . ) = ge, and B(g,e,) = (ge,) a then

a = _ E(g,el); where E(g,el) = E(g,el)ﬁ(g,el). (410)
(g)EG(M | M) x1I

The set supp @ is compact, it follows that there is a finite subset IcG (A7I | M) x I such
that

supp a[ ) U s | =2,
(8,0)€(G(M | M)xI)\T
and taking into account (£.10) one has
a= Z ~a(g e) Z ge, (ge0) (4.11)
(g€l gHel
It follows that from (@.TT).

[ } Z [ get} Blge) T &(ge) [ﬁ'g(g,e:)}:

gH)el

Y Bigey |DrBigey] +E(ge) [P Bigey)
(gr)el

(4.12)

where the equality {IND,BZ(g,eI)} E(g,et) = E( 2.e) {IND,EZ(&@,)} follows from commutativity of
€™ (M) 1 8(ge,), (g0, Bige) € C (M) are given by

Age () T€ g,
0 TR ¢uU, '

(g (X) X € gl

a(g,e,) (7-[ (x))

Il
— N ——

Dé(g,el) (ﬁ (5{)) 0 ~ (f) é u[ )
Bge (7T (X)) = ﬁ(g’eé) (%) ic;%i{é, "
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~\ ~
and X(ge) € Co (M) is the characteristic function of gi{, then from
supp E(glel),supp E(glel),supp B(g,e,) C gZ/NIl

it follows that

Ez(gfel) = X(g,e,)a(g,el) = a(g,el)X(g e) — X(g et)lx(g el)X(g e.)’

[Bgen] = Xiger [Prtigen] = [Ptigen]| Xigeo = Xigan [Pr2(ga0] Kige 413)
Bge) = Xge)Pige) = Blge)X(ge) = X(ge)Pge)X(ge)

2. Bigen) = Xigen [P:Bigen] = [P:Bigen] Xigeo = Xigen [2:Bigen] Xigen:

From (£12) and @I3) it follows that

[’B' 5} = ( Z)Tﬁ(g,m [ID/X<g,e,>“<g,eL>X<g,e,>] + (g [ID/X(g,e»ﬁ(g,a)%(g,e,)} =
g1)E
(Z Iﬁ ge)X(ge) {D""(g,a)} + &(ge) X(ge1) [Dfﬁ(g,e:)} = (414
g€
Y Bigen [Prtigen| +Fge [P Bigen) -
(gr)el

where I is Dirac operator on M. If e Blgey € C (M,,) are given by

g€
o) = X SEgey
geker(G(M | M)—G(M | My))
ﬁ?g,el) = Z gﬁ(g,el)’

gcker(G(M | M)=G(M | My))
then for any n > N following condition holds

le,(i) @ [Pusan] = ) B (g0 (22| + ) [P Bigen)]

(g;,l)el~

From the strong limits lim;, e N(ge) = Ec'(g,el), limy, e lB(g,el) = B(g,e,) it follows that

hm 1c cy () ® [Py, an] = Z (hm ,3” {D/a(g,e, } + hm uc [D ,3 (g.e) D

n—0o

(g,l)el
R (4.15)
= X (ﬁ(g,e:) {Df"‘(g,e:)} +a(ge) {D'ﬁ(g,e:)D

(gu)el
where the above limit means the strong convergence. The right part of (I5) lies in
Ce (1\71) Qcy(m) Q}Z, C L? (Co (M)) Qcy(M) Q}D, it follows that 4 satisfies to the condition

(c) of the Definition[3.31] It turns out any 4 € C® (M) i8 & oo (), 12(M,5),1p)-Smooth. [
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If C§° (M) is the completion with respect to seminorms ||-||, given by (3.11) then C§° (A7I
is the smooth algebra of the coherent sequence @.5) (cf. Definition B.34). The algebra
ce (M) is a dense subalgebra of Cy (]\71) in the C*-norm topology, so the sequence (5)

is regular (cf. Definition[3.36). If @ € C° (AZ) and ay is given by (3.12), i.e.

ﬂD = lim 1M( )

n—o0

D, Y| ] (4.16)

8€n
then from (@.15) it follows that
)y PBlgen® [Df“(g,e/ } + & (ge) [D Pge) } (4.17)
(gr)el

If £ € H® =T (M,S) and I is given by (3.13), i.e

l\’_]»

P @Exe) = a]D® i (8)+a®DE =

j=1

Z Bge) [D"‘ge[}g‘f'“ggl ®[D,ﬁggl}§+ﬁ®wg.
(1)l

then clearly
P @Eee = ( a®¢) where 1D is the lift of [P (cf. Definition [[.13).

Since the space C* (]\71) NCe (]\71) is dense in Cy ( ) we have the following theorem

Theorem 4.10. Following conditions hold:

o The sequence of spectral triples
& (o (M), L2(M5), ) = {(c°°( ), L2 (M,S),ID) - (c°° (M), L2 (MO,SO),IDO),...,
(C™ (M), L2 (M, 8,), D) ... } € Coriple
given by (@&3) is reqular (cf. Definition [3.36),
o The triple (C§° (M), 12 (M, S), D) is the (C (M), Co (M), G (M | M) )-ift of
(¢ m),12(M,9), D)

(cf. Definition B.37).
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5 Coverings of noncommutative tori

5.1 Fourier transformation

There is a norm on Z" given by

(k1) k)| = /K3 + .. + 2.

The space of complex-valued Schwartz functions on Z" is given by
S(z" = {a = {ac}pegn € CZ" | supgegm (1+ [[K[|)® |ax] < o0, Vs € JN}.

Let T" be an ordinary n-torus. We will often use real coordinates for T”, that is, view T" as
R"/Z". Let C*® (T") be an algebra of infinitely differentiable complex-valued functions

on T". There is the bijective Fourier transformations Fr : C® (T") = S (Z"); f — [
given by

Fp) = Fr(H(p) = [ e>™0f (x)dx 1)

where dx is induced by the Lebesgue measure on R” and - is the scalar product on the
Euclidean space IR”. The Fourier transformation carries multiplication to convolution, i.e.

fgp =Y F(Nges).

r+s=p
The inverse Fourier transformation 7' : S (Z") = C®(T"); f — f is given by

fx)=Fr'f(x)= Y F(p)e™r.

peZ"

There is the C-valued scalar product on C® (T") given by

(£.8)= | fedx= ¥ F(-p)g(p).

peZ!

Denote by S (R") be the space of complex Schwartz (smooth, rapidly decreasing) func-
tions on R".

S(R") = {f € C¥(R"): |[fllop) < 00 Ve = (a1,tn), = (B1,-Pn) €Z1},

ap (5.2)
| fllep = sup [x*DPf(x)
x€R"
where
x% =t
ppo_9_ 9
axlﬁl oxy"

The topology on S (R") is given by seminorms || - || s-
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Definition 5.1. Denote by S’ (R") the vector space dual to S (R"), i.e. the space of contin-
uous functionals on S (R"). Denote by (-,-) : &’ (R") x S (R") — C the natural pairing.
We say that {a, € S’ (R")}, o is weakly-* convergent to a € S’ (R") if for any b € S (R")
following condition holds
nh_{r.}o (an,b) = (a,b).
We say that
a= lim a,
n—o0

in the sense of weak-* convergence.

Let F and F~! be the ordinary and inverse Fourier transformations given by

(FF) )= [ FOe 2, (F71) ()= [ foyear (5.3)

JIR2N JIR2N

which satisfy following conditions
Fo .F_l‘S(R11) = F_l o ‘F‘S(]R”) = IdS(]R”)

There is the C-valued scalar product on S (R") given by

(f,8) = /]R fedx = /R FfFgdx. (5.4)

which if F-invariant, i.e.

(f.8) =(Ff, Fg).

5.2 Noncommutative torus T”G)

Let © be a real skew-symmetric n x n matrix, we will define a new noncommutative
product xg on S (Z") given by

(Fre8) (= ¥ Fg@e e (5.5)
r+s=p

and an involution R _

fr(p) = f(=p))-
In result there is an involutive algebra C® (T%) = (S (Z"),+,*e ,* ). There is a tracial
state on C*® (T given by

T(f) = £(0). (5.6)

From C*® (TY) ~ S (Z") it follows that there is a C-linear isomorphism
Poo : C® (T) = C™(T™). (5.7)

such that following condition holds

[, 9w () dx. (5.8)



Similarly to there is the Hilbert space L? (C* (T%), ) and the natural representation
C® (Tg) — B (L? (C* (T%), 7)) which induces the C*-norm. The C*-norm completion
C (Tg) of C* (T}) is a C*-algebra and there is a faithful representation

C(1y) —+ B (12 (C™(T13),7)). (5.9)
We will write L? (C (Tg), 1) instead of L2 (C® (T%), 7). There is the natural C-linear

map C*® (T}) — L* (C(T%), 1) and since C* (Tp) ~ S (Z") there is a linear map ¥ :
S(Z") — L*(C(Tg), 7). If k € Z" and Uy € S (Z") = C*® (Tg) is such that

Ui (p) = by : Vp € 2" (5.10)
then ‘ ‘
ukup — ik @Puk+p; ukup — p—2mik - G)pupuk- (5.11)
If & = Yo (Uy) then from (B.5), (5.6) it turns out
T (Ui *xe Up) = (8, &1) = du, (5.12)

i.e. the subset {&};czn C L? (C (T%),7) is an orthogonal basis of L? (C (T%), 7). Hence
the Hilbert space L? (C (T%) , T) is naturally isomorphic to the Hilbert space ¢ (Z") given
by

2(z") = {6 = {8 €Chem €C¥ | L |Gi* < 00}

kezn

and the C-valued scalar product on ¢? (Z") is given by

Mgy = X Ck

kezn

The map Yo : S (Z") — L? (C (T}), T) can be extended up to the map
Yo : C(TE) — L2(C(TH), ). (5.13)

From (5.8) it follows that for any a,b € C* (T}) the scalar product on L? (C (T§), 1) is
given by
(a,b) = /T” aéommbeommdx (5.14)

where dcomm € C® (T") (resp. beomm) is a commutative function which corresponds to a
(resp. b). An alternative description of C (T},) is such that if

0 912 . 91n
621 0 cee 6271
o=\ . . . ) (5.15)
6nl 9n2 0
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then C (T ) is the universal C*-algebra generated by unitary elements uy, ..., u, € U (C (T%))
such that following condition holds

Ujlp = 6727Ti6jkuku]'. (5.16)

Unitary operators uj, ..., u, correspond to the standard basis of Z".

Definition 5.2. Unitary elements i, ...,u, € U (C (T})) which satisfy the relation (5.16)
are said to be generators of C (T§). The set {U;};.z is said to be the basis of C (Tg).

Definition 5.3. If ® is non-degenerated, that is to say, o'(s, t) &t 5. Ot to be symplectic. This
implies even dimension, n = 2N. One then selects

®_er@9(_id]g> (5.17)

where 0 > 0 is defined by 62N 4 jet®. Denote by C* (T3N) def oo (T2N) and C (T2V) def

C(T2Y).

5.3 Geometry of noncommutative tori
Denote by 6, (4 = 1,...,n) the analogues of the partial derivatives %% on C®(T")

which are derivations on the algebra C*(T¢) given by
Oy (Uy) = kyU.
These derivations have the following property
Ou(a*) = —(0ua)”,
and also satisfy the integration by parts formula
T(adyb) = —7((0ua)b), a,b e C*(TE).

The spectral triple describing the noncommutative geometry of noncommutative n-torus
consists of the algebra C®(T¢), the Hilbert space H = 12 (C(TE), 1) ®C™, where m =
2"/2] with the representation of C**(T%,) given by 7 ® 1 B(CN)- The Dirac operator is given

by
def .
D:azzay@wl‘% Z(SV@WV, (5.18)
u=1 u=1
where d;, = §,, seen as an unbounded self-adjoint operator on ‘H and 7"s are Clifford
(Gamma) matrices in My (C) satisfying the relation

Yo+ )y =267y
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There is a spectral triple
(c™(T8), 12 (C(Th), ) ©C", D). (5.19)

There is an alternative description of D. The space C* (T") (resp. C® (T§) ) is dense in
L% (T") (resp. L? (C* (%), 7)), hence from the C-linear isomorphism @o : C* (Tg) =
C® (T") given by (£.7) it follows isomorphism of Hilbert spaces

@: L2 (C(T}),7) = L2 (T").

Otherwise T" admits a Spin-bundle S such that L? (T?,S) ~ L? (T") ® C™. It turns out
an isomorphism of Hilbert spaces

@ :L*(C(TE),7)@C™ = 12 (T",S).
There is a commutative spectral triple
(c°° (T"), L2 (T",S), 12)) (5.20)

such that D is given by
D=®'oDod. (5.21)

Noncommutative geometry replaces differentials with commutators such that the differ-
ential df corresponds to 1 [, f] and the well known equation

n af
u=1""H

is replaced with
n

D, f] = Z af (D, x,] (5.22)

Xu

In case of commutative torus we on has
dxy, = iuyduy
where u, = e~ so what equation (5.22) can be written by the following way
- Of .
(D, f] = Z 3, i [ uy (5.23)
We would like to prove a noncommutative analog of (523), i.e. for any a € C* (T})

following condition holds

" da
[D,a] = X; o, D, uy] (5.24)
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From (5.18) it follows that (5.24) is true if and only if

n

0
[5;{,a} = 21 éu; [5;{, uy} ; ‘u = 1,. .o n. (5.25)
U=

In the above equation a% means that one considers a as element of C* (T"), takes % of

it and then the result of derivation considers as element of C* (T). Since the linear span
of elements Uy is dense in both C* (T%) and L? (C (T%), 7) the equation (5.25) is true if
for any k,I € Z" following condition holds

;|

The above equation is a consequence of the following calculations:

(8, U] Uy = 8, Uy — Uyl = (k + DU, — 1URUy = kUL,

ol

= kUku;u,,ul = kUkul.
For any k € Z" following condition holds
wy [0, ] U = w8t Uy — uy, 8 Uy = g, ((k+ 1) Uy — kuy Uy) = Uy
it turns out
5.4 Finite-fold coverings
5.4.1 Basic construction

In this section we write ab instead a x@ b. Let © be given by (5.15), and let C (T%) be a
noncommutative torus. If k = (k, ..., k,) € N" and

~0 512 - gln
1 O 0

is a skew-symmetric matrix such that

o~ 2ibrs _ ,—27ibskrks
then there is a *-homomorphism C (T)) — C (T”@) given by
ki .
Uj v j]; j=1,..,n (5.27)

42



where uy, ..., uy € C(Tg) (resp. vy,..,vp € C (T”@))) are unitary generators of C (T{)
(resp. C (T”@)). There is an involutive action of G = Z, X ... X Zy, on C (T”@) given by

27ripj
— — &
(P1, - Py) vi=e 1 v,

G
and a following condition holds C (Tg) = C (T"@)) . Otherwise there is a following

C (Tg) - module isomorphism

C (T%) = @ Ufl Cat UZ”C (T%) ~ C ('][‘%)kl'---'kn
(?1""ﬁn)€zkl X-..Xan

ie. C (T”@) is a finitely generated projective Hilbert C (T{)-module. It turns out the
following theorem.

Theorem 5.4. [12] The triple (C (T%) ,C (T”@) Ly X e X an) is an unital noncommutative
finite-fold covering.

5.4.2 Induced representation

Similarly to (2.6) we consider following pre-Hilbert space
2
C () ®c(my) L* (C(T8),7)

and denote by # its Hilbert completion. There are dense subspaces C® (T”@) ccC (T”@),
C® (Tg) C L?(C (T%) , 7), hence the composition

= (3) Dcm(my) € (TE) € C (T2) Oc(ry) L2 (C(T8),7) C H

is the dense inclusion. Otherwise C® (T%) Dces (11 C® (Tg) = C* (T”@) it follows that
there is the dense (with respect to the topology of the Hilbert space) inclusion

c (Ty) C A
Ifa,beC® (T%) then from (2.6) it turns out
(70 Yo (1c(ry)) B Yo (leqry)) ) ; =

- (o 1ce)) (#8) o Yo ) -

2(C(Te).7)

:/ Z 8 (Eékomm Ecomm) (x) dx = /~ Aomm Ecomm (x) dx
™ gezklx...xzkn ™
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where Gcomm € C* (T™) (resp. dcomm) i @ commutative function which corresponds to @
(resp. @). Above formula coincides with (5.14). Taking into account that C*® (T”@) is dense

in the Hilbert space 12 (C (T"@)) , ‘?) one has an isomorphism
H o~ L2 (c (T%) ,%) (5.28)

of Hilbert spaces. Thusif p : C (T%) — L (C (T%), ) theng: C (T”@) — B (L2 (C (T”@) ,”?))
is induced by the pair (p, (C (T%), C (T”@) ,G (C (T”@) | C ("IF”@))))

5.4.3 Coverings of spectral triples
Let us consider following objects

e The spectral triple (C®(T}), L? (C (T%), 1) ® C™, D) given by (5.19),

e An unital noncommutative finite-fold covering (C (Tg),C (T”@) Ly X X Zk”)
given by the Theorem 5.4

Let g0 : C® (T) = C*(T") be a C-linear isomorphism given by (57) and suppose
that xy,...,x, € C(T") are unitary generators of C (T"). Let 7tcomm : C (T") — C (Tl"v”)

be a *-homomorphism which corresponds to a finite-fold covering of commutative torus.
Clearly T" ~ T". We suppose that 7Tcomm is given by

ki

whereyq,...,.yn € C ("INF”) are unitary generators of C (T”) There is a topological covering
¢ : T" — T" induced by *-homomorphism 7Tcomm. There is a commutative spectral triple
(C™(T™),L?(T",S), D) given by (520). Denote by S = ¢*S, Ip = ¢* D inverse images of
the Spin-bundle S and Dirac operator I? (cf. [.2.2) L.13). From (5.28) it turns out that the
representation p : C (T"@) —B (L2 (C (T"@) ,?) ® Cm) is induced by

(p, (C (T),C (T”@) Ly X X an)) ,

where p : C(T%) — B(L*(C(T%),t) ®C™). Otherwise there is a natural C-linear
isomorphism

§:12(c(Ty) wC7) 512 (T7,5)

of Hilbert spaces. Denote by

Dz@flofDo@.

Clearly C* (T"@) is dense in C T”@ and operator D satisfies to conditions (b), (c) of the
Definition 2.14 In result one has a following theorem.
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Theorem 5.5. The triple (C (T24), 12 (C (T4) ), D) isa (C (T4),C (T4) , Z, x .. x Z, )-
lift of (C®(T}), L2 (C (T}), 1) ® C™, D).

Similarly to (5.24) for any @ € C*® (T%) following condition holds
O
D,d] = ¥ =uy [Dw] (5.29)
where uy, ..., u, are unitary generators of C® ("IF”@).

5.5 Moyal plane and a representation of the noncommutative torus

Definition 5.6. Denote the Moyal plane product +g on S (R?M) given by

(f %o h) (u) = /y . f <u — %@y) g (u+ ) ¥V ?dydy (5.30)

where @ is given by (5.17).
Definition 5.7. [7] Denote by S’ (R") the vector space dual to S (R"), i.e. the space of

continuous functionals on S (R"). The Moyal product can be defined, by duality, on larger
sets than S (R?N). For T € &' (R?N), write the evaluation on g € S (R?N) as (T, g) € C;
then, for f € S we may define T x5 f and f %p T as elements of S’ (R*N) by

(Txg f,8) = (T, f 0 8)

(FroT,8) (T, g% f)

using the continuity of the star product on S (R?). Also, the involution is extended to

(5.31)

by (T*,g) = LT, ¢y (T, g*). Consider the left and right multiplier algebras:

MO LT e SR : Txgh € S(R) for all h € S(R?N) },

MO, E LT e S(R™N) :hxg T € S(R2V) for all h € S(R™N) }, (5.32)
MO A8 A M8
In [7] it is proven that
MG 5 S (JR2N ) =S (IRZN ) and S’ (JR2N ) oMl =8 (JR2N ) : (5.33)

It is known [10] that the domain of the Moyal plane product can be extended up to
L? (R?N).
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Lemma 58. [10]If f,g € L2 (R®N), then fxog € L2 (R2V) and ||f|l,, < (276) 2 ||
where |||, be the L?-norm given by

def

1Al = (5.34)

1
2
[ 1P

and the operator norm

ITllop ' sup{ | T *gll2/llgll2 -0 # g € L (R*N)) } (5.35)

Definition 5.9. Denote by S (RZV) (resp. L? (R3Y) ) the operator algebra which is C-
linearly isomorphic to S (R?N) (resp. L2 (R?M) ) and product coincides with . Both
S (R2N) and L? (R3N) act on the Hilbert space L2 (R?V). Denote by

Yy S (RZN) %S (RgN ) (5.36)
the natural C-linear isomorphism.

5.10. There is the tracial property [10] of the Moyal product

/RZN (f %0 &) (x)dx (x) g (x)dx. (5.37)

- ]RZNf

The Fourier transformation of the star product satisfies to the following condition.

F(Frog) () = [ FFx=y) Fgy)e™ O dy. (538)

Definition 5.11. [10] Let S’ (R?Y) be a vector space dual to S (R?"). Denote by C, (R3N) def

{T € 8(R?N) : Txpg € L*(R*N) forall g € L?(R?N)}, provided with the operator
norm »
ITllop = sup{ [T %o gll2/llgll2: 0 # g € L*(R*Y) }. (5.39)

Denote by Cy (R3Y) the operator norm completion of S (RZV) .

Remark 5.12. Obviously S (R3V) < C, (R3N). But S (R3Y) is not dense in C,, (R3V), i.e.
Co (R3N) € Cp (RZN) (cf. [10]).

Remark 5.13. L% (R3V) is the || - |2 norm completion of S (R3") hence from the Lemma
it follows that
12 (JRgN ) e (IRéN ) . (5.40)

Remark 5.14. Notation of the Definition B.I1] differs from [10]. Here symbols Ay, Ag, A9
are replaced with G, (R3V) , S (R3N), Cy (R2N) respectively.

Remark 5.15. The C-linear space Cy (IR3") is not isomorphic to Cy (R?N).
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There are elements { fu; € S (R?) }
proposition.

Proposition 5.16. [710] Let N = 1. Then S (]R(%N ) =8 (]R(%) has a Fréchet algebra isomor-
phism with the matrix algebra of rapidly decreasing double sequences ¢ = (cmn) such that, for each
keN,

mneNO7 described in [7], which satisfy to the following

def [ © k k 12

re(e) ( Y % (m+d) (n+1) |cmn|2) (5.41)
m,n=0

is finite, topologized by all the seminorms (ry); via the decomposition f = Y g o Cyun frun Of S(IR?)

in the { fun} basis. The twisted product f *g g is the matrix product ab, where

def
(@5) oy = Y A (5.42)
k=0

For N > 1, C® (IRZN) is isomorphic to the (projective) tensor product of N matrix algebras of this
kind, i.e.
S(RPV) =8 (R}) @8 (R3) (5.43)

N—times
with the projective topology induced by seminorms ry given by (5.41).

Remark 5.17. If A is C*-norm completion of the matrix algebra with the norm (5.41) then
A=K, ie.

Co (JRg) ~ K. (5.44)
Form (5.43) and (5.44) it follows that
Co(leN)%CO(]RZ,)@---@CO(]Rg)zIC®~-~®IgzIC (5.45)
4 N—times
N—times

where ® means minimal or maximal tensor product (K is nuclear hence both products
coincide).

5.18. [10] By plane waves we understand all functions of the form
x — exp(ik - x)
for k € R?N. One obtains for the Moyal product of plane waves:
exp (ik-) x@ exp (ik-) = exp (ik-) g exp (ik-) = exp (i (k + 1) -) e~ *-©! (5.46)

5.19. The equation (5.46) is similar to the equation (5.IT) which defines C (T§). This fact
enables us to construct a representation 7 : C (T%) — B (L? (R?N))

7:C(Th) — B (L2 (IRZN)),
Uy — exp (27tik-)

(5.47)
where Uy € C (T},) is given by the Definition 5.2
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5.20. Let us consider the unitary dilation operators E; given by

def
Eaf(x) 1€l aN/Zf(al/Zx)’
It is proven in [10] that

freg = (8/2)"N'2Ey6(Eg/2f *2 Eg/28)- (5.48)

We can simplify our construction by setting 6 = 2. Thanks to the scaling relation (5.48)
any qualitative result can is true if it is true in case of § = 2. We use the following notation

fxg & frog (5.49)

Definition 5.21. [10] We may as well introduce more Hilbert spaces G (for s,t € IR) of
those

[e9)

fES/(IRZ) = 2 Crnn fnn

m,n=0

for which the following sum is finite:
2 def v 1ys 1yt 2
LIS = 2 (m+2)°(n+ 2) emnl™
m,n=0

for Gs;.

Remark 5.22. It is proven in [7] f,g € L? (R?), then f x ¢ € L?(R?) and |f x g| <
I£1l llgll- Moreover, f x g lies in Cy (IR?) : the continuity follows by adapting the analogous
argument for (ordinary) convolution.

Remark 5.23. It is shown in [7] that

S (R2) =N Gu (5.50)

s,teR

5.24. This part contains a useful equations proven in [7]. There are coordinate functions
p,q on R? such that for any f € S (IR?) following conditions hold

qx f= <q+i%)f; pxf= <p—i%>f;

fxq= (q—i%)f; fxp= (p+i%>f.

From g x f,fxq,p x f,f x p € S (R?N) it follows that p,q € M? (cf. (5.32)). From (5.33)
it follows that

(5.51)

g % S/ (]RZN) cS (RzN); p x S/ (RzN) cS (]RZN);

S (]RZN) xqgc S (]RzN); S’ (]R2N) xpCS (]RZN) . (5.52)
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If f € S’ (R?) then from (5.5]) it follows that

p) , , ) . .
gf——wfﬂfqu a—qf—lpr—lfxp

If
ad:equrip Ed:efq—ip
\/EI \/EI
ECLQf aq—Fiap idﬁf aq—iap
da 2 o1 2
def _ 1/ o o
=3 (),
axa=H-1, axa=H+1
then
of of
axf—af+£, fxa—af—ﬁ,
of of

ﬁxf:ﬁf—g, fxazﬁf%—%,

H Xfmn = (2m+1)fmn; fmn x H = 2(n+1)fmn

ax fmn =V memfl,n; fmn Xa=+2n +2fm,n+1;
aX fun = V2m+2fpi1 0 fsin X8 = V2ify 1.

It is proven in [7] that
0i (fxg)=0;f xg+fx09g;

where 9; = aix]_ is the partial derivation in S (R?V).

5.6 Infinite coverings

Let us consider a sequence

Sc(my) = {C (Tg) =C (T”@O) LINNYG (T”@j) LASN

(5.53)

(5.54)

(5.55)

(5.56)

(5.57)

(5.58)

(5.59)

of finite coverings of noncommutative tori. The sequence (5.59) satisfies to the Definition

@ ie. GC(T”@) € Sian[g.

5.25. Let ©® = J6 where 8 € R\Q and
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def
Denote by C (T2V) =

numbers such that py > 1 for any k, and let m; = H;{lek. From the 5.4 it follows that
there is a sequence of *-homomorphisms

C(TZY). Let {px € N}ten be an infinite sequence of natural

S = {c (m3Y) = c(13),2) = c (1)) = = C (Tﬁ%) - } (5.60)
such that

(a) Forany j € N there are generators u;_11,...,.uj_12ny € U (C <T§I/\Im]2._1)> and gener-

ators uj,..., ujon € U (C (TZN )) such that the *-homomorphism C (TZN ) —

0/m? 0/m3_
C <T§I/\Im]2> is given by
g g uﬁ; Vk=1,..,2N.
There are generators iy, ..., oy € U (C (T3Y)) such that *homomorphism C (T3Y) —
C <T§I/\Im%> is given by

pP1. P
uj ”1,1]" Vj=1,..,2N,

(b) For any j € IN the triple <C (TZN C (TZN >,Zp].>) is a noncommutative

0/m3 ' 6/m?
finite-fold covering,

(c) There is the sequence of groups and epimorphisms
N — 723N«

which is equivalent to the sequence
G (c(m2z) 1c(m)) «c(c(my) 1¢(T3Y)) « -
«G (c (Tsl/\’mz) Ke (T@N)) e
]

The sequence (5.60), is a specialization of (5.59), hence Gy € Fin2lg. Denote by C (T%N ) def
lim C <T§I/\’m]2>, G EimG <c (T§7M?> | C(T2N )) . The group G is Abelian because it
is the inverse limit of Ablelian groups. Denote by 0z (resp. "+") the neutral element of G
(resp. the product operation of G).
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5.6.1 Inverse noncommutative limit

There are the equivariant representation

7% C(T2V) = P gl (R3Y) (5.61)
8<]
and an inclusion Z2N — G described in [12].
Theorem 5.26. [12|] Following conditions hold:
(i) The representation T is good,
(ii)

@iGe =Gy (leN) p
G <@¢69 e (TgN)> — 72N,

(iii) The triple (C (T3N),Co (R3N),Z?N) is an infinite noncommutative covering of &y with
respect to 7P,

5.6.2 Induced representation

Denote by L? (Cy (R3Y)) € Co (R3N) the space of square-summable elements (cf. Defi-
nition B.19). Clearly S (RZV) C L? (Cp (R3V)) and since S (R3") is dense in L? (R3N) in
the topology of the Hilbert space, L? (Cy (R2V)) is also dense in L? (R3V). Similarly to
(B3.7) we consider following pre-Hilbert space

£ (o (R5)) @cqap) 12 (€ (1Y) <)

and denote by # its Hilbert completion. From the dense inclusions S (R3N) < L? (Cy (R3N)),
C® (T3N) c L? (C (T3N), 1) it follows that the composition

$ () o) € (1) 260 (189 gy 2 (1))

is the dense inclusion. Otherwise S (R3N) ®C°°(T§N) C® (T3N) = S (R3N) it follows that
there is the dense (with respect to the topology of the Hilbert space) inclusion

S (lRéN) CH.
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abes (R3N) then from (3.7) it turns out it turns out

(721 B % (o)), =

B (1C<T§N)’ 2 8 (ﬁ*z) Ty (1C(T§N))) -
gezZ?N LZ(C(TgN),T)
o (g;mg (For Emmm)) (x) dx = /]R ., Feomm beomm (%) d%

where dcomm € S (R?N) (resp. beomm € S (R?N)) is a commutative function which cor-

responds to @ (resp. b). Above equation coincides with (537). Taking into account that
S (R2VN) is dense in L2 (R3M) one has an isomorphism

A~ 12 (R2Y)
of Hilbert spaces. Thus if p : C (T3Y) — L2 (C (T3Y), 1) then both
p:C(T2N) = B (2 (r2V)),
o (1) 8 (1 (1))
are induced by (p, &, 7).

5.6.3 The sequence of spectral triples

Let us consider following objects
e A spectral triple of a noncommutative torus (C°° (T2N), 1 = L* (C(T3N),7) ® c?", D) ,
e A good algebraical finite covering sequence given by
— 2N 2N 2N 2N :
S = {c (T3¥) = c(13),2) > c (1)) == C (Tg/m]z) - } € Fin2Alg.

given by (5.60).
Otherwise from the Theorem it follows that

S (e 2(c(13)r) o 0) = {(c= (o), 12 (c(13V),7) ©€*,D), ...,

(o] N :
(c (Tgljm]g> L2 (c (Tgljm]g> ,r]-> ®C? ,Dj> ;.. } € CohTriple

is a coherent sequence of spectral triples. We would like to proof that

(5.62)

S (c(mo),L2(c(T3V),r)2c? D)
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isregular and to find a (C (T3Y), C (R2N) , Z*N)-lift of (C"" (Ty), L2 (C(T3N),7) @ CZN).
If p: C(Ty) — B (L? (C(T3N), 1)) ® C2" is the natural representation then from the 5.6.2

it turns out that
p:C(R3V) - B (12 (RV) )

is induced by (p, Gy, 7). Let us consider a topological covering ¢ : R?N — T?N and a
commutative spectral triple (C* (T2N),L2 (T?N,S), D) given by (520). Denote by S =
P*S, D= @*IP inverse images of the Spin-bundle S and the Dirac operator I§ (cf.
[L.13). Otherwise there is a natural isomorphism of Hilbert spaces

§: 12 (RV) o€ 512 (R) o ",

Denote by

Dz@floINDoa

5.6.4 Smooth elements
Following lemmas will be used for the construction of the smooth algebra.
Lemma 5.27. [[12] Following conditions hold:

(i) Let {ay € Cp (R3N)} _n be a sequence such that

neN
o {ay,} is weakly-* convergent (cf. Definition5.1),

o If a = limy, 00 ay, in the sense of weak-* convergence then a € Cy, (]RgN )

Then the sequence {ay} is convergent in sense of weak topology {a,} (cf. Definition
and a is limit of {a,} with respect to the weak topology. Moreover if {a,} is increasing
or decreasing sequence of self-adjoint elements then {a,} is convergent in sense of strong
topology (cf. Definition [1.36) and a is limit of {a, } with respect to the strong topology.

(it) If {an} is strongly and/or weakly convergent (cf. Definitions[L.36}[L.37) and a = lim,_c0 ay,
is strong and/ or weak limit then {ay} is weakly-* convergent and a is the limit of {a,} in
the sense of weakly-* convergence.

Lemma 5.28. [12]] Let Gj = ker (Z2N — Z%{j) Leta € S (IR3N) and let

aj= Y g (5.63)

where the sum the series means weakly-* convergence. Following conditions hold:
(i) aj € C® (RV),

(ii) The series (5.63) is convergent with respect to the strong topology (cf. Definition [[.36),
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(iii) There is a following strong limit
a = lim a;. (5.64)
J—
Lemma 5.29. The system of seminorms ||-||, given by B.I1) is equivalent to the system of semi-
norms ||+ 4, . 1,y) §tven by
ofitttan

oxit axt”"a
1 -+ 0NN

def

||EH (tlr“'rtZN) -

op
d ottt
f )N

9x7" ... 0X

S' (R?N) and ||-|| op 18 the operator norm given by (5.39).

where t1,...tpy € N, an means partial derivation of a regarded as element in

Proof. Operators 1, (R2N) ® rcjs. (aj) € B (’}-725) from the condition (b) of the Definition
B31] can be regarded as matrices in Myson (B (L? (R?N))), so we will write

Ty (x3) @75 (07) = (k) oy € Mo (B (12 (R) )

From (5.29) it follows that

2N aH] 2N aa]
[Dj,aj] = Z%Euy [D,u,] = Z:lryf‘muy [0, 1y ] (5.65)
p= p=

where u1,...,u, are unitary generators of C* (Tj) If s = 1 then from (518) (5.29) it
follows that for any «, f element m,g is given by

My = 4]
or thereis y € {1,...,2N} such that
. o
] _ ] %
mlxﬁ = Euy [5]4, 1/[]4] (566)
and taking into account (5.26) one has
—y (5.67)
“b " oxy

From i € S (RZV) and the Lemma[5.28 for any u = 1,...2N the sequence

da;
] 0 2N
—ecC (T 2> }
{axu 1)) jen

is strongly convergent and following condition holds
0a; a

lim — = a—a.
joeo dxy  OXy
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Hence if m{x s is given by (5.66) then there is a following strong limit

i am o

ap = mtxﬁ = Euﬂ [5;(,11]4} = E (568)

where 7,5 is element of matrix which represent 7! (@). From (5.65) and the Lemma
one has a strong limit

lim 1, % (D, ] 2 n o1 (5.69)
() @ axy a 7 axy ’

]%oo

It follows that from (I.4) and (5.66) if s = 2 then the matrix which corresponds to 7112 (aj)
for any y =1,...,2N contains a submatrix

D aa]
o5

For any v =1,...,2N the above submatrix contains an element given by

. 2
j %4

8211]-
m =
“ " 9x,0xy

0x,0xy

uy, [0y, uy] =

(5.70)

From the and the Lemma one has a strong limit

Paj %

]li}ngo 0xy0xy,  0xy,0x,

so the matrix {m, ﬁ} contains an element %. Similarly for any multiindex (ty, ..., t2n) €

(]NO)2M there is s € IN such that 1Cb(]R§N) ® 7] (aj) € B (ﬁzs) is represented by a matrix

(m]“ﬁ) w,p=1,..252N € Moy (B (L2 (]Rm) ))

such that there are «, § such that

. titttang.
j 9 4

Map = axil ...axgy‘ 671
From the and the Lemma it follows that for any s € IN there are strong limits
tite+aNg
Myp = lim m{xﬁ 9 2 (5.72)

ty 1N
j—roo oxy' ... 0xy

so one has the strong limit 7° (7) = lim;_,, 77° (a ]-) for any s € IN. The operator 1Cb<R5N) ®

n]? (aj) € B (’HZ ) is represented by a matrix (miﬁ)a,ﬁzl,...zszf\’ € Mys,n (B (L? (R?N))) it
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follows that the norm ||7t° (7)|| of 7° (@) is equivalent to the system of operator norms of
its matrix elements given by

" at1+"'+t2N’av
Hm“ﬁH = PYCIEW (5.73)
Xy 0 [l op
O
Lemma 5.30. Any d € S (IR3N) satisfies to the conditions (b), (c) of the Definition 331}
Proof. (b) Follows from the Lemma [5.29
(c) From (5.69) it turns out that
, _ANogm
]i)nolo 1Cb(]R§N) & [D]', a]-} = VX::l Eu’l [D, uy} (5.74)

If L2 (Co (IR3N) ) is a space of square-summable elements (cf. Definition3.19) then S (R3Y) C
L? (Co (R3N)). Taking into account % € S (RFN), uj [D,uy] € Qp and G74) one has

lim 1Cb(IR2”) ® [D]-, a]-} cL? (CO (]RgN)) ®C(T§N) Q%)

j—roo
(]
Corollary 5.31. Let fun € S (IR3) be given by the Proposition5.16] If a € S (R3N) is such that

4= foyn @ @ fmynys (cf. @.45)) (5.75)

thendaisa & ( oo -smooth element with respect to T°.

(Ty),L2(C(T3V),7) 22N D)
Proof. From the Proposition it turns out that fi n,, ..., fmyny are rank-one operators,
hence @ = fun, ® -+ ® finyny is also a rank-one operator. So 4 lies in the Pederesen ideal
of Cy (R3N), i.e. 7 satisfies to the condition (d) of the Definition B.31). The conditions (a)
follows from the Lemma [5.28] conditions (b), (c) follow from the Lemma (5.30)
O
~ . _ . /\@
532. Ifaisa & ( Co(Tg), L2(C(T2V) 1) CZN,D) smooth element with respect to 7% then from
(5.73) it follows that if ap is given by (3.12) then
1 ANoam
ap = ]i}nolo 1Cb(IR2”) X [D], ﬂ]] = y;l Eu’l [D, MV:I (576)
For any ¢ = (&1,...,8mn) € C°(TAY) ® c? ¢ 12 (C®(TZ), 1) ® C?" the operator D
given by (3.13) satisfies to the following condition

_ IN 5= - IN 5z R
D@w¢) =), g—uy [Dw]E+aD¢ =), s=@'i+aw ) 1"5=,
u=1""H u=1-""H# =1 2
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and taking into account (5.58) one has.

_ 2N d
= H_—_
D Z (vt (5.77)
u=1 I
The given by (3.11) seminorms ||-||, satisfy to following equation
alls = 7 (@] op (5.78)

where S ) - @ 0
@) = ([z,zﬁl Yok e @] (ﬁ)) |

Lemma 5.33. Let abea & ( - -smooth element with respect to T given

(Ty),L2(C(T3V),7) 22N, D)

by (561) (cf. Definition B31) then a € S (R3N) .

Proof. Letaisa & ( - -smooth element with respect to 7% given by

(Te),L2(C(T3V),7)ec?V,D)
G.61) (cf. B.3T). From the condition (d) of the Definition 3.3T) and the Theorem it
follows that @ € K (Cp (R3V)). Otherwise from Cy (RZV) ~ K (cf. (5.45) ) and taking into
account that any b € K (K) is a finite-rank operator, one concludes that 7 is a finite-rank
operator. From this fact and (5.45) it turns out that

=Y., whered =7, @iy € C (R}) & o C (K3), (5.79)
j=1 |

N—times

where Efl', . .Eé\, € C (R3) are finite-rank operators. Let us select the representation (5.79)
such that M is minimal. If a € Cy (R2) is a finite-rank operator then it can be represented
by the following matrix

A0 0 0
0 A 0 0

="l 0o ...A 0 .. |7 (5.80)
0 0 ... 00

where u, v are finite-rank partial isometries. Above operator can be represented by follow-
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ing way

r
a =Y _ ayPr, where ay, Py are given by

k=1
0 0 0
UCk =u O ‘/\k‘ 0 7
0 0 0 (5.81)
0 0 0
: o
Br= |0 o0 0.
0 0 0
Above equation is equivalent to
X = Z ‘kafmk/
m=0 (5.82)

lBk = io :Bkmfkm

where {f,x € S (R3) },, ;o are given by the Proposition From the above equation
it follows that a;f is a bounded operator if and only if

— 2

Z |D‘mk‘ < OO,
m=0

[}

Z ‘ﬁkm‘z < .

m=0

From the Remark 5.22 it turns out a;fy € Co (IR?). From this fact and taking to account
equation (5.8I) one concludes that any term of the finite sum (5.79) lies in Cy (IR?). It
follows that 7 € Cy (R*Y). Denote by

g€ker (ZzN eZ},{}’ )

From the condition (a) of the Definition B.31] it turns out that aj € C¥ (ng/\lm) It follows
]

that a; corresponds to a smooth function a; € C* (T%{;l ) Otherwise 4; can be regarded as
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a smooth periodic function on RN and a; is a distribution, i.e. a; € S’ (R?N). From the
proof of the Lemma one can write

1Cb(]R5N) ® HJS' (a) = (miﬂ)pc,ﬁ:l,...ZSZN € Msow (B (Lz (RZN))) :

From (5.72) it follows that for any multiindex (1, ...tN) € (]NO)ZN there is s € IN such
that Ie, (R2V) ® n]? (aj) € B (ﬁzs) is represented by a matrix

(706) s,z € Ma (B (12 (R)))

such that there are &, f which satisfy to the following equation
j af1+“'+f2Na].

op axil ...axgy‘ (5.83)

m

From the condition (b) of the Definition following conditions hold:

e For any multiindex (t1,...,tN) € (]NO)ZN there is the following limit
L
Myp = }1}11;0 Myp
in the strong topology (cf. Definition [1.36).

e The limit corresponds to a bounded operator with respect to the operator norm

G39.
From (ii) of the LemmaB5.27]it follows that the strong topology limit is 77,5 = lim; e m{; 8
is the limit in sense of the weak-* convergence, so one has

ofitt+tang

g = lim m), (5.84)

; B~ 5 h taN*
j—reo axl . ..8x2N

and right part of (5.84) corresponds to a bounded operator, i.e. % € B (L? (R?N)).
1 772N

If one considers a factorization (5.79)

ﬁ:izﬁ, whereafzﬁ§®---®ﬁéveC(lRé)®---®C(1R5)
=

N—times

such that M is minimal then all partial tensor products

P=de wicC(Rf) o oC(R}); j=1,..,M

(N—1)—times
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are linearly independent. Similarly to[5.24 for j™ term of the tensor product

c(R}) e - wc(r})

N—times

we denote by pj, q; coordinates which satisfy to (5.51) - (5.52). One has
M 9 . .

— A=) — R Q).
j 1

Elements P; are linearly independent, it follows that if any term in the above sum is un-

bounded with respect to the norm (5.39) then all sum is unbounded. So a%lﬁ]i is bounded

for any j = 1,... M. Otherwise 4] is a finite-rank operator it follows that 4] can be repre-

sented by (5.81), i.e.
~1 !
ap =) o % Pr (5.85)
k=1

Otherwise taking into account (5.53) one has
a . T T
a_“]l =Y —ign X ap X B+ Y g x i x iy (5.86)
P k=1 k=1

From (5.81) it turns out that all terms in (5.86) are linearly independent, so if one or more
terms are unbounded (with respect to the norm (5.39)) then the whole sum is unbounded.
Otherwise g1 X ap X By is unbounded if and only if g; X &y is unbounded. Similarly
ax X By % g1 is unbounded if and only if B x g7 is unbounded. From this fact it turns out
that all operators

q1 X &g, Br X 41

are bounded. Similarly one can prove that following operators
p1 Xk Prxp1
are bounded. Clearly if

@ tipr, - q1—ip
= 1= - a1 =—

V2 V2

ay
then operators

a; X ag, Brxay, a1 X &g, Px X ay,
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are bounded. Similarly to (5.54) we define H; = @; x a; — 1. For any m,n € IN a distribu-

tion % aﬁ—;ﬁ% is a bounded (with respect to (5.39)) it follows that for any I € IN following
distributions

H1><"'><H1><1Xk, ﬁkXH1X"'XH1
—_——— —_——

|—times |—times

are bounded operators. From (5.56) and (5.82) it follows that
=Y Qpicfunks
m=0

Bx = iO,Bkmfkml

[e9)

Hy x -+ X Hy Xap = Z (Zm“‘l)ll’cmkfmkr
D e — —
I—times m=0
,kaHlx---le—Z(ZM—l—l) ,Bkmfkm;
—_— =

| —times

hence operators Hy x - -- x Hj xay and By X Hy X --- x Hy are bounded if following con-
————— —————

[—times [—times

ditions hold:

2m+ 1) |au|* < oo,

agk

3
g

(2m + 1) | B |* < o0

e

m=0

Form the Definition it follows that for any s € IN following conditions hold:
ar € Gatsr Pr € Gs
Since we can select arbitrary [ and taking into account (5.50) one has
akxﬁkeS(le).
From (5.85) it turns out that
des (IRZ)
If we consider representation (5.79)

E—iﬁj, whereﬁjzﬁé®~'®ﬁé\,EC(R%)G@"'@C(]Rg)
j=

N—times
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then similarly to the above construction one can prove that

B eS(R);j=1,.,M k=1,...N.
From (5.79) it follows that

ies(R}) e ws (R} cs(RY).

N—times

where one means the algebraic tensor product. O

Lemma 5.34. Denote by C5° (R3N) the smooth algebra of & (C=(T0)2(C(T3V) )52 ) with

respect to T. Following condition holds
S (R) c ¢ (R3Y).
Proof. Let Iy = (]NO)2 andletI = IN. Forany v = ((m},n}),..., (m¥,n%)) € I we denote

o g € (1) 058 (1) .5 (1)

N—times

where we mean the algebraic tensor product. Indeed S (R?V) is the projective comple-
tion of the above algebraic tensor product with respect to seminorms ;. given by (5.87).
From the seminorms (ry) given by (5.41) it turns out that S (IR*N) is a space of C-linear
combinations

L eofs where v = (... (mgmg)) € €

such that for any k = (ky,...,ky) € (]NO)N following condition holds

2(ki+ -tk 2 1\*r aARE
| Yef ) = (9 (ki+-+kn) Yolel T1 (m; + 7) (n; + 2) > <oo.  (5.87)
p=1

vel vel
If M € IN and and I C I is a finite subset such that
I =A{((mi,ny),..., (m§,ny)) €I|my,ny, .. mgng <M} (5.88)
then (5.87) is equivalent to

al v 1\ 1R
D |CV‘H(mP+7) (”p+2) < .
p=1

VGI\IM

: k k 1\F 1\F :
From the above equation and (m+n+1)" < 2 (m + 7) (n + 7) ,Vm,n, k > 1. it fol-
lows that for any M > 1 and [ > 1 following condition holds

N !
Y el T (m; +n +1) < oo, (5.89)
vel\Iy p=1
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From the Lemma (5.29]it turns out that the system of seminorms ||-||, given by B.11) is
equivalent to the system of seminorms |-, . ;) given by

ofi -+t

oxit athNa
1 - 9N

def

12l ty,..op00) =

op
This lemma is true if for any (¢4,...,tN) € (]NO)ZN from

at1+"'+t2N

f N a <
ox;' ... 0xy

op

it follows that for any ¢ > 0 there is a finite subset Iy C I such that

ofit++thn
l‘2N fv

1
axl .

<e (5.90)

Z |ev]

VGI\If

op

Let us replace coordinates xy,...,x2n with coordinates py,q1,..., pn,gn such that pj,g;
are coordinates on j term of the product S (]Rz) ®---®S (]Rz) C S (R?N). From the

N—times
equation
of1+-+tan ofut2 ofan-1hN
m - aptla f fmlrnl @ —ap?]abﬁ\z] mynyy (591)
it follows that
| oti++taN || otit2 | ofan—1.f2n (5.92)
T hH abn/V m{,n{ myny ’
axl e axZN op P q op p q op

Our proof can be simplified if we use scaling construction i.e. we set § = 2. Indeed
many quantitative results does not depend on 6. Similarly to (5.49) we write f x g instead
of f*29. Moreover one can use given by (5.54) coordinates 4,7 instead of p,q. From (5.55)
it follows that

of of

gz—axf—i-fxa, ﬁzaxf—fxa,

and taking into account (5.57) one has

0
];;n = —V2m+ 2fm+l,n +V2n mmn—1s

d o
fmn fm in—V 2n + 2fm,n+l‘

If t1,t, € N and |t| = t; + t; then from the above equations and || fyx|| op = 11t follows
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that
atlltz

datioah2’ ™"

‘ op

h f2 5.93
<<\/2m+2+|t|+\/2n+|t|> <\/2m+t+\/2n+2+|t|> < O

o

< @m42n+2+42[t)" @m+2n+24+2(t)2 = @m+2n+2+2]t))

If m,n > M then

It
(2m+42n+242|t)" < (74]\4_’_2 (2m+2n +2) (5.94)
Let us consider a differential operator
ofi -+t ofut2 ofan—1.f2n
=P®- - ®Py (5.95)

- o492 . 9al2N-1g12N - oatloa ®--® 9ai2N-1 572N !
1 1 - N N 1 1 N N

and denote by |t| = t; + - - + fon. If M € IN and Iy is given by (5.88) then from (5.94) it
turns out

N 1t
Y el T (zm; +2n) +2+42 m) <
vel\Iy p=1

4M+2+2|t)t| N i
< (7 Y leof [T (2ms+205 +2) "
4M+2 vl p=l ( )
From (5.89) it follows that right part of the above equation is convergent, hence one has
N It
Y el ] (2m;+2n;+2+2|t|) < (5.96)
vel p=1

From (5.93) and (5:96) it follows that the series

chpfv

vel

is |-||op-norm convergent (cf. (5.39)) , so the series Y, cjcy fy is convergent with respect to

seminorms ||-||, given by G.I1).
(]

5.6.5 Covering of spectral triple

Following theorem completely describes infinite coverings of noncommutative tori.

64



Theorem 5.35. Let & ( oo € CohTriple be a coherent sequence of spectral

(Te),L2(C(T3V),7) @2V, D)
triples given by (5.62). Let 7% : C (T3N) — @gejgL? (RGN) be an equivariant representation
given by (5.61). Following condition holds:

(i) If C3* (R3N) is the smooth algebra of 6< Coo with respect to T®

Ty),12(C(T3V),7) 2N D)
then C3 (IR3N) is the completion of S (R3N) with respect to seminorms given by (5.78),

(ii) The sequence & ( - ) is regular with respect to T%,

(Tg),L2(C(T2N),7)oC2N,D
(iii) If D is given by (5.77) then the triple
(¢ (R3Y), 12 (R*) @ €', D)
is the (C (T3N), Co (R3V), Z2N)-lift of (C (T3V), 12 (T2V) @ €2", D).

Proof. (i) From the Lemma [5.34 it follows that C{° (R3") is contained in the completion
of S (R3N) with respect to seminorms given by (5.78). From the Lemma it turns out
S (R3V)  cif (R2Y).

(ii) The algebra S (R3Y) is dense in Cp (R2N), so C5° (R3V) is dense in Cy (R3Y).

(iii) Follows from the construction 5.32 O

6 Isospectral deformations and their coverings

A very general construction of isospectral deformations of noncommutative geometries
is described in [6]. The construction implies in particular that any compact Spin-manifold
M whose isometry group has rank > 2 admits a natural one-parameter isospectral de-
formation to noncommutative geometries Mg. We let (C® (M), H = L*(M,S), D) be
the canonical spectral triple associated with a compact spin-manifold M. We recall that
A = C*(M) is the algebra of smooth functions on M, S is the spinor bundle and 7 is the
Dirac operator. Let us assume that the group Isom(M) of isometries of M has rank r > 2.
Then, we have an inclusion

T? C Isom(M),

with T2 = R2/27Z? the usual torus, and we let U(s),s € T2, be the corresponding
unitary operators in H = L?(M, S) so that by construction

U(s) P = D U(s).

Also,
U(s)al(s) ' = as(a), Yac A, (6.1)

where s € Aut(.A) is the action by isometries on the algebra of functions on M.
We let p = (p1, p2) be the generator of the two-parameters group U(s) so that

U(s) = exp(i(s1p1 +52p2)) -

65



The operators p; and p, commute with D. Both p; and p; have integral spectrum,
Spec(p;)) CZ,j=1,2.

One defines a bigrading of the algebra of bounded operators in H with the operator T
declared to be of bidegree (11, 1,) when,

as(T) = exp(i(siny +spm2)) T, Vs € T2,

where as(T) = U(s) TU(s) ™! as in @1).

Any operator T of class C* relative to a5 (i. e. such that the map s — a5(T) is of class
C® for the norm topology) can be uniquely written as a doubly infinite norm convergent
sum of homogeneous elements, R

T = Z Tnl,nz ’
nyny

with Ty, 4, of bidegree (111, 115) and where the sequence of norms || Ty, n,|| is of rapid decay
in (n1,ny). Let A = exp(27if). For any operator T in H of class C* we define its left twist
I(T) by

IT)= Y Tuym A"2F1, (6.2)

11,12

and its right twist 7(T) by

r(T) = Z Tnlfnz APz,

nq,mny
Since [A| = 1 and py, py are self-adjoint, both series converge in norm. Denote by
C* (M), n, C C* (M) the C-linear subspace of elements of bidegree (11, 12).
One has,

Lemma 6.1. [6]

a) Let x be a homogeneous operator of bidegree (n1,ny) and y be a homogeneous operator of
bidegree (n', n%y). Then,

L) r(y) = r(y) 1(x) = (xy —y2x) AT (6.3)
In particular, [I(x),r(y)] = 0if [x,y] = 0.
b) Let x and y be homogeneous operators as before and define
xxy = A" xy; (6.4)

then 1(x)l(y) = I1(x xy).

The product * defined in extends by linearity to an associative product on the linear
space of smooth operators and could be called a *-product. One could also define a
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deformed ‘right product’. If x is homogeneous of bidegree (11,1;) and y is homogeneous
of bidegree (1}, n5) the product is defined by

!
Xxpy = A2 xy.

Then, along the lines of the previous lemma one shows that r(x)r(y) = r(x *, y).

We can now define a new spectral triple where both H and the operator D are unchanged
while the algebra C® (M) is modified to [(C® (M)) . By Lemma [6.1 b) one checks that
1(C*®(M)) is still an algebra. Since D is of bidegree (0,0) one has,

[D, 1(a)] = I([D, a])
which is enough to check that [D, x| is bounded for any x € I(.A). There is a spectral triple
(I(C*(M)),H,D).

Denote by C (My) the operator norm completion (equivalently C*-norm completion) of
1(C*(M)), and denote by p : C(M) — L2 (M,S) (resp. m : C(My) — B (L?>(M,S)) )
natural representations.

6.1 Finite-fold coverings
6.1.1 Basic construction

Let M be a spin - manifold with the smooth action of T2. Let 71 : M — M be a finite-fold
covering. Let Xy € M and xo = 7 (X). Denote by ¢ : R> — R?/Z? = T? the natural
covering. There are two closed paths wy, w; : [0,1] — M given by

wy (t) =@ (£,0)x9, wy (t) = ¢ (0,t) xp.

There are lifts of these paths, i.e. maps w;, @, : [0,1] — M such that

w1 (0) = @2 (0) = Xo,
(@ (1) = wi (),
(w2 (t) = w2 (t).

Since 7t is a finite-fold covering there are N, N, € IN such that if

71 (t) = ¢ (N1£,0) x0, 72 (t) = ¢ (0, Nat) xo.

and 71 (resp. 732) is the lift of 71 (resp. <2) then both 71, 9, are closed. Let us select
minimal values of N, Np. If pr,, : S' — S! is an 7 listed covering and pry, N2 the covering
given by

pry, XPpry;
x gl L 2

T =5 — S x st =T

then there is the action T2 x M — M such that

67



T2 x M M
Py, N, X 7T T
T2 x M M

where T2 ~ T2 Let p =
parameters group U (s) so tha

1, P2) be the generator of the associated with T2 two-

-

U (s) = exp (i (5191 + $2P2)) -

The covering M — M induces an involutive injective homomorphism
p:C™ (M) > C (M).

Since M — M is a covering C* (M) is a finitely generated projective C* (M)-module, i.e.

there is the following direct sum of C*® (]\71) -modules

c* (M) @ r=c® (M) (6.5)
such that N
9(C* (M), ,, € C* (M)

11Ny, naNp

Let 6, 0 € R be such that
0+n

NNy’
If A = 279} = ¢270 then A = AN1N2_ There are isospectral deformations C* (My), C*® (Mg)
and C-linear isomorphisms [ : C® (M) — C® (Mj), [ : C® (]\71) — C® (]\715). These iso-
morphisms and the inclusion ¢ induce the inclusion
g0 1 C (My) = C (M),
95 (C* (Mg)),, © C (Mg)

0 = where n € Z.

mNy, 1Ny
Theorem 6.2. [12] The triple ( (Mp),C (M~) G (M \ M)) is an unital noncommutative
finite-fold covering.
6.1.2 Induced representations and finite-fold coverings of spectral triples
Following facts are evident:
e If both p : C(My) — B(L2(M,S)) and p : C (Mg) ~ B (L2 (Z\7I §)) are natural
representations then p is induced by (p, (C (My),C (Z\Zg) ,G (Z\7I, M) ) ),
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o If the spectral triple (C°° (]\71) L2 (Z\7I, §) , 15) isa (C (M),C (A7I) ,G (A7I | M))-lift
of (C*(M),L*(M,S), D) then the noncommutative spectral triple

(ic= (m),12 (m,5), )
isa (c (M), C (1\715) ,G (M | M))-lift of (IC*® (M), 12 (M,S), D).

6.2 Infinite coverings

Let S = {M = M? + M! + ..+ M" + ...} € §inTop be an infinite sequence of spin
- manifolds and regular finite-fold covering. Suppose that there is the action T?> x M — M
given by (6.I). From the Theorem [6.2]it follows that there is the algebraical finite covering
sequence
6C(M9) = {C (Mg) —..—=C (Mgn) — } .

So one can calculate a finite noncommutative limit of the above sequence. This article does
not contain detailed properties of this noncommutative limit, because it is not known yet
by the author of this article.
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